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Chapter 1 Introduction

Once heralded as the holy grail, the capability of obtaining a comprehensive list of genes,

proteins or metabolites that are different between a disease and normal phenotypes is routine

today. And yet, the holy grail of high-throughput has not delivered so far. Even though

such high-throughput comparisons have become relatively easy to perform, understanding

the phenomena that determine the measured changes is as challenging as ever, if not more

so. At the same time, we have started to understand that evolution of many diseases such

as cancer, are the results of the interplay between the disease itself and the immune system

of the host. It is now well accepted that cancer is not a single disease, but a “complex

collection of distinct genetic diseases united by common hallmarks” [123]. The heterogeneity

of diseases such as breast cancer is well recognized [147] and gene expression profiling has

been used to identify at least four major subtypes: luminal A, luminal B, HER2+ and

basal-like [148, 169]. In the past decade, important clinical advances in cancer treatments

are attributed to molecularly targeted treatments aiming at specific genes such as estrogen

receptor alpha (ER-α) , HER2, EGFR, MET, BRAF, etc. The targeted treatments result in

greater efficacy and lesser debilitating or dose limiting side effects [163]. This clearly proves

that it is important to identify and appropriately treat each particular individual or disease

subtype. However, our current understanding of disease subtypes appears to be very limited.

Despite targeted treatment advances, targeted therapies often fail for some patients. For

breast cancer, while 20% of tumors overexpress the HER2 oncogene, one-third of these fail

to show response to HER2-targeted therapies right from the outset. Research and clinical

studies present a similar story for anti-estrogen treatment of ER-α-positive breast cancer

and androgen ablation of androgen receptor positive (AR+) prostate cancer [34, 88]. Not

all patients demonstrate an initial response, and for those who do, a significant number will

develop resistance. The fact that a substantial fraction of patients with a given subtype of



www.manaraa.com

2

cancer respond very differently to the same treatment, either immediately or later on, means

that either the mechanism of action is not homogeneous in the same subtype or that patients

have different defense mechanism against the same tumor subtype. For example, the second

largest pharmaceutical company in the world has recently announced the discontinuation of

a Phase III multi-million dollar clinical trial because it did not meet the primary objective

of improving overall survival.1 According to Dr. Mace Rothenberg, senior vice president

of Clinical Development and Medical Affairs for Pfizer’s Oncology Business Unit, Pfizer

Inc. will continue to investigate the respective drug ”in specific patient subsets within the

heterogeneous patient population enrolled in this trial”, which leads to the conclusion that the

failure was most likely due to a previously unknown division un the study population.

Another aspect is related to the choice of optimal treatments. For example, cytotoxic

chemotherapy remains the standard adjuvant therapy for lung cancer and it is not rou-

tinely recommended as part of the initial course of treatment for individuals with early stage

disease [5, 203]. However, the high recurrence rates for stage I non-small cell lung can-

cer (NSCLC) raises the consideration that a subset of patients may benefit from adjuvant

therapy. Indeed, recent multinational clinical trials show that adjuvant chemotherapy can

significantly improve the survival of patients with advanced early-stage (Stage IB-II) dis-

ease [17]. It follows that the capability to prognosticate outcomes – e.g., which tumors are

likely to recur after surgical resection – would allow for better disease management where

only patients who will benefit are treated and others who will not do not receive unnecessary

over-treatments.

The ultimate goal of personalized medicine is the ability to identify the specific mecha-

nism of disease in each patient independently and provide specialized treatment accordingly.

Currently, most of the treatments available are based on the type of disease. An intermediate

step in achieving the ultimate goal is to be able to identify homogeneous disease subtypes

and patient sub-groups. To this extent, one angle of this thesis is focused on increasing the

1http://press.pfizer.com/press-release/pfizer-discontinues-phase-3-study-inotuzumab-ozogamicin-
relapsed-or-refractory-aggress

http://press.pfizer.com/press-release/pfizer-discontinues-phase-3-study-inotuzumab-ozogamicin-relapsed-or-refractory-aggress
http://press.pfizer.com/press-release/pfizer-discontinues-phase-3-study-inotuzumab-ozogamicin-relapsed-or-refractory-aggress
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prediction accuracy and prediction confidence of existing machine learning techniques. In

particular, it it very important to distinguish between samples for which the prediction is

trustworthy because they fall in a region of the input space that is rich in samples from one

class, and samples for which the prediction is not very trustworthy either because they fall

very near the decision boundary or because they fall in an area of input space very far from

any input sample used in the training. These latter samples can in fact represent previously

unknown disease subtypes or patient sub-groups. This problem is addressed in Part I by

first describing the techniques already available in Chapter 2 and then proposing a novel

method for computing classification confidence in Chapter 3. The problem of sub-grouping

the patient population is addressed in Chapter 4.

Once these sub-groups have been identified, the outstanding problem is the adequate

characterization of the disease mechanism (see Part II). The particular avenue we have chosen

to follow in order to achieve this goal is to eliminate the gene selection stage currently the

norm in the pathway analysis of high throughput data. The goal of pathway analysis, in the

context of this thesis, is to take as input the experimental data (i.e., the expression changes

between two phenotypes) and the pathway database (i.e., the set of pathways that describe

various biological processes) and identify the the pathways that are significantly impacted

between the two phenotypes (see Chapters 5 and 6). It has been shown that the specific

choices made in the selection of differentially expressed (DE) genes have a crucial impact

on the specific set of genes selected [140]. Therefore, the results of the pathway analysis

step which uses the set of DE genes as its input are also going to be highly dependent

on these choices. By eliminating this step, one can eliminate the possibility of missing

important genes. This will improve our ability to understand the disease mechanisms of

different disease subtypes. Our cut-off free (i.e., no DE gene selection) approach is presented

in Chapter 7 and Chapter 8 presents the implementation of these methods as released in

Bioconductor [73].
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Part I

Patient Subtyping Using

Machine Learning

Chapter 2 Support Vector Machines and

classifier ensembles

In this part of the thesis we use machine learning to focus on patient classification, di-

agnosis and subtyping. The ability to identify the correct disease subtype or stage of a

patient is crucial to the follow-up investigations and treatment. Moreover, identifying pre-

viously unknown disease subtypes can lead to better design of clinical trials and can reduce

the drug development time [69]. To this extent we focused on improving the performance

of one of most commonly used algorithms for classification, the Support Vector Machines

(SVMs) [18, 36, 191].

In this chapter we introduce necessary background information on SVMs that will be

used in the later chapters. We present the theory behind the maximal marginal classifier,

as well as different techniques to calibrate posterior probabilities to the output of the SVM

classifiers. In addition, techniques to use SVMs as part of ensemble classifiers are presented.

The chapter concludes by outlining the current SVM limitations.
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2.1 Support Vector Machines

When building an SVM classifier, the input (x(i), Y (i)) is a set of labeled points in n-

dimensional input space such that x(i) ∈ Rn. For binary classification, the label Y (i) belongs

to {−1, 1}, while for an m-class classification Y (i) ∈ {1, 2, . . . ,m}. Without loss of generality

the following discussion will refer to the binary classification problem. In the multi-class

scenario different techniques can be used to divide the problem in a set of binary classifica-

tion problems, such as one-vs-all or one-vs-one. The predictions of the binary classification

problems are then combined to a final prediction using a voting schema for example.

Using the labeled input points, SVM finds a function f : Rn → R such that for a given

input x, f(x) ≥ 0, if x belongs to the class denoted by 1, otherwise f(x) < 0. The equation

f(x) = 0 defines a hyperplane that is used for classification of unknown samples. When the

input consists of linearly separable classes, it is easy to find such a hyperplane using:

f(x) = 〈w · x〉+ b =
n∑
k=1

wkxk + b (2.1)

where, w is the normal vector of the hyperplane defined by f(x) = 0 and b is the offset from

the origin. If b = 0, the hyperplane passes through the origin.

However, finding such a function is more complex in a non-linearly separable data set.

The complexity of the target function f(x) depends on the way input data is represented. A

common pre-processing practice in machine learning is to map the input data into another

space where the two classes will be linearly separable:

x = (x1, . . . , xn) 7−→ φ(x) = (φ1(x), . . . , φn(x)) (2.2)

The new space is often referred to as a feature space in the literature. In the new feature
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space, f(x) is represented as:

f(x) = 〈w · φ(x)〉+ b =
n∑
k=1

wkφk(x) + b (2.3)

It can be shown that f(x) can be expressed as a linear combination of the input data

points [38]:

f(x) =
l∑

i=1

αiY
(i)〈φ(x(i)) · φ(x)〉+ b (2.4)

where l is the number of samples in the training set. The parameter αi is referred to as

the embedding strength of the pattern x(i), which is proportional to the number of times the

pattern x(i) is misclassified during the training.

However, mapping the input space into a new feature space can be a time-consuming

operation since the feature space is very likely higher dimensional. In addition, due to

higher dimensionality, it is more difficult to find the hyperplane for classification. Therefore,

SVMs employ a shortcut through the use of a kernel function that allows the inner product

in Eq. 2.4 to be computed without explicitly mapping the input points into the feature space.

A kernel function is defined as:

K(x, z) = 〈φ(x) · φ(z)〉 (2.5)

Examples of such kernels include the linear (L), radial (R) and polynomial (P) kernels:

L : K(x(i),x(j)) = x(i) ∗ x(j) (2.6)

R : K(x(i),x(i)) = e−r∗|x
(i)−x(j)|2 (2.7)

P : K(x(i),x(i)) = (r ∗ x(i) ∗ x(j) + coef0)degree (2.8)
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Using Eq. 2.5, we can rewrite Eq. 2.4 as:

f(x) =
l∑

i=1

αiY
(i)K(xi,x) + b (2.9)

The definition of the hyperplane, f(x) = 0, determines the type of the classifier. The

simplest classifier is a maximal margin classifier, which is only suitable for input data that is

linear separable in the feature space. The geometric margin γi of a pattern x(i) is defined as

the Euclidean distance from the given pattern to the separating hyperplane. The geometric

margin of a training set S with respect to a given hyperplane is the minimum geometric

margin of all patterns in the training set S. The margin γ of a training set S is the maximum

geometric margin over all possible hyperplanes. The maximal margin classifier, as the name

implies, finds the hyperplane witch maximizes the geometric margin of the training set. It

can be shown that finding the maximal margin hyperplane is equivalent to the following

optimization problem [38]:

min
w,b

〈w ·w〉

s.t Y (i)
(
wtx(i) + b

)
≥ 1, i = 1, · · · , l

(2.10)

The hyperplane obtained by solving this optimization problem realizes the margin γ = 1
‖w‖2 .

It is often easier to solve an optimization problem in its dual form than its primal form

because of the inequality constraints. The optimization problem above can be expressed in

its dual form as:

min
α

l∑
i=1

αi −
1

2

l∑
i,j=1

Y (i)Y (j)αiαj〈x(i) · x(j)〉

s.t
l∑

i=1

Y (i)αi = 0, αi ≥ 0, i = 1, . . . , l

Because the dual formulation only consists of an inner product between patterns of the input

data, we can use a kernel function as defined in Eq. 2.5 to find the optimal hyperplane in
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the feature space. Hence, the optimization problem can be re-written as [38]:

min
α

l∑
i=1

αi −
1

2

l∑
i,j=1

Y (i)Y (j)αiαjK(x(i),x(j))

s.t
l∑

i=1

Y (i)αi = 0, αi ≥ 0, i = 1, . . . , l

The optimal hyperplane obtained using the dual optimization problem realizes the mar-

gin:

γ =
1

‖w‖2
=

(∑
i∈SV

α∗i

)− 1
2

(2.11)

where, α∗ is the solution of the dual optimization problem and SV represents the set of

support vectors (i.e., subset of the input data for which α∗i 6= 0).

The maximal margin classifiers have limited applications since they can only be applied

to data sets that are linearly separable in the feature space. This limitation can be avoided

by using a soft margin optimization technique. The classifier that uses the soft margin

optimization allows misclassification of some of the samples during training. This training

error is controlled by slack variables. In other words, we need to find a hyperplane such that

the constraint of the primal optimization problem above is modified as

s.t Y (i)(〈w · x(i)〉+ b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . , l

The generalization error is bounded by either the 2-norm or the 1-norm of the slack vector

[38]. The 1-norm soft margin optimization problem is described as

min
w,b
〈w ·w〉+ C

l∑
i=1

ξi

s.t. Y (i)(〈w · x(i)〉+ b) ≥ 1− ξi, ξi ≥ 0

(2.12)
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and its dual as

min
α

l∑
i=1

αi −
1

2

l∑
i,j=1

Y (i)Y (j)αiαjK(x(i),x(j))

s.t
l∑

i=1

Y (i)αi = 0, C ≥ αi ≥ 0, i = 1, . . . , l

(2.13)

Using the solution of the optimization problem (α∗i and b∗) the optimal decision function

h∗(X) is defined as:

h∗(x) = sign(f ∗(x)) = sign
( n∑
i∈SV

α∗iY
(i)K(x(i),x) + b∗

)
(2.14)

where SV is the set of support vectors (i.e., the set of input samples for which α∗i 6= 0), X is

a new testing sample, and f ∗ is the optimal decision function. This hyperplane realizes the

margin:

γ =

( ∑
i,j∈SV

Y (i)Y (j)α∗iα
∗
jK(x(i),x(j))

)− 1
2

(2.15)

2.2 Calibrating Probability Scores

The decision function, h∗(x) (see Eq. 2.14), is not a probabilistic output. In some appli-

cations, having a high accuracy or a large area under the receiver operating characteristic

(ROC) is not enough, and it is important to obtain accurate probability estimates. Efforts

have been made to assess how well calibrated the output scores are for a given algorithm [40],

and to create transformations that re-scale the scores back into calibrated probability esti-

mates [211]. Two popular parametric and non-parametric approaches are Platt’s scaling [145]

and isotonic regression [154] respectively. A common feature of both methods is that the

resulting transformations are monotonically increasing functions, which is what would be

expected from such transformations.

Predicting good probabilities is not an easy task, since in practice the true posterior

probability P (Y = 1|X) is not known. However, one sanity check is the requirement that
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the posterior probabilities are well calibrated. This means that for any interval of prob-

abilities [p1, p2], the probability of drawing a positive example given the classifier predicts

P̂ (Y = 1|X) ∈ [p1, p2] should also be in [p1, p2]. Previous studies have suggested that

many classifiers, including naive Bayes and maximum margin methods, do not predict well

calibrated probabilities [211, 145]. It has been shown that naive Bayes models that make

simplistic assumptions about the probability structure push the posterior towards 0 and 1,

while maximum margin methods such as SVM and boosted trees push away from the ex-

treme probabilities [135]. In addition, it has been shown that Platt’s scaling is effective for

maximum margin methods, while it is less suited for naive Bayes [135]. Isotonic regression

is also effective, but is inferior for smaller datasets. Since the calibration process requires

internal cross validation, which makes the effective training data even smaller, Platt’s scaling

is preferred in SVMs [135].

Platt’s model fits the posterior probability to f ∗(x(i)) (i.e., p(Y = 1|f ∗)) [145]. Based

on empirical data, he observed that the class-conditional densities of f ∗ are exponential and

calculated the posterior probability as:

p(Y = 1|f ∗) =
1

1 + eAf∗+B
(2.16)

The parameters A and B can be computed based on the input data using maximum

likelihood estimation (MLE). Platt used the following regularized maximum likelihood opti-

mization problem:

min
A,B

−
∑
i

(
ti log(pi) + (1− ti) log(1− pi)

)
(2.17)

where pi = p(Y (i) = 1|f ∗(x(i))) and ti =


N++1
N++2

: Y (i) = +1

1
N−+2

: Y (i) = −1
with N+ and N− the

number of positive labels and the number of negative labels respectively.
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2.3 Classification ensembles

By definition, an ensemble of classifiers is a collection of base classifiers, together with an

appropriate aggregation technique that will combine the output of each individual base clas-

sifier into an ultimate prediction. Among the existing ensemble building methods, bagging

and boosting received a lot of attention. In bagging, or bootstrap aggregating [19], the base

classifiers are trained independently on bootstrapping samples drawn with replacement from

the entire training set. The aggregation is typically based on majority voting, i.e. each base

classifier accounts for one vote in predicting the class label; the one receiving most votes

will be the ultimate predicted label. In boosting (most commonly AdaBoost [66]) the base

classifiers are trained sequentially with weighted data. The weight of each training sample is

associated with the performance of the preceding base classifier on that sample. A previously

misclassified sample will be given more weight in training the subsequent base classifier. The

final aggregated prediction is a weighted average calculated from the base classifiers, with

base classifiers of higher accuracy having more weight. Independently of how the outputs of

the base classifiers are aggregated, ensembles of classifiers have been proven to yield better

accuracy than single classifiers.

Constructing ensemble classifiers using SVM as base classifiers is not a novel idea. Kim et.

al. [116] employed bagging and boosting SVM with three aggregation methods, i.e. majority

voting, LSE-based weighting, and double-layer hierarchical combining. All the proposed

ensemble methods outperformed the single SVM. Valentini et. al. [185] proposed a variation

of bagging, Lobag, that selects low-bias classifiers before aggregation is applied. Recently,

Wang et. al. [200] analyzed and compared 4 different SVM ensemble techniques (bagging,

AdaBoost, Arc-X4 and a modified AdaBoost) with 20 UCI data sets. In their experiments

the bagged SVM ensemble performed as well or better than any other method.

In addition to classification accuracy, the confidence (i.e., the posterior probability) of the

prediction carries an important role. The existing methods for generating posterior prob-
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Figure 2.1: A simple example of a two dimensional binary classification problem. Once a hyperplane that
separates the crosses (+) from the circles (◦) is found, any new test example falling on the positive side of the
hyperplane will be classified as a cross, with no distinction made between points such as A and B. However,
this is undesirable since the prediction confidence of A should be greater than that of B. A small change in
the training protocol could alter slightly the position of the hyperplane and B could in fact be classified as
a circle. We propose for the prediction of this type of examples to be marked as uncertain. Source: [198].

abilities for classification ensembles are design to either combine the base classifier proba-

bility outputs (e.g., distribution summation [33, 3]) or to calibrate the aggregated decision

value (e.g, naive Bayes [182]; Platt scaling, Isotonic regression, logistic correction for boost-

ing [134]). The first category are likely to be computational intensive due to the requirement

of fitting a posterior probability model for each base classifier. The second category were

developed from the need to recover some of the information lost through the aggregation

process.

2.4 Limitations

Many classification methods including SVMs have limited classification powers when a

test instance lies either: i) very close to the decision boundary or ii) it is very different from

the training samples. As described in the previous sections, once the SVM optimization

problem is solved, the prediction of a test sample is given by sign (f ∗(x)) (see Eq. 2.14).
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Hence, considering the example in Fig. 2.1, once the decision boundary is set between the

two classes (crosses and circles), the two points A and B are going to be predicted as crosses.

However, one should be more confident that A is a cross in comparison to B. The prediction

of the latter can be highly influenced by noise, or choice of training parameters. Currently,

the output of classical SVM does not include any information allowing the user to make the

distinction between A and B. It is also possible that a test instance, which is very different

from the training sample, may belong to a completely different class that the SVM classifier

was not designed to identify. In such a case, the SVM is unable to detect the fact that

the given instance is far from anything used during the training and will always classify the

test sample to one of classes that it is trained for. Even though, different methods have

been proposed to calibrate posterior probabilities, the selection of a confidence threshold

is still a difficult task. Moreover, in various real-world classification applications, there is

significant amount of uncertainty due to noise, insufficient data, and specific training and

testing protocols. In many applications, like clinical diagnostic, it is beneficial to explicitly

recognize this uncertainty instead of trusting the classifier output and ignoring the problem

altogether. The applications that benefit from identifying uncertainty are the applications

where the cost of rejecting a sample due to uncertainty is less than the cost of an incorrect

classification.

In this thesis, we aim to address these limitations by proposing a method to drastically

improve the performance and quality of the posterior probabilities for ensemble classifiers

(see Chapter 3) and a method to automatically detect an uncertainty region around the

decision hyperplane of the SVM (see Chapter 4).
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Chapter 3 Posterior probabilities for classi-

fier ensembles

It has been shown that the performance of any classifier can be improved by using an

ensemble of the same classifiers [85, 204, 66, 120, 19, 21, 116, 118, 16, 146, 92, 72, 157,

117]. Ensemble systems improve the generalization of single classifiers by aggregating the

prediction of a set of base classifier. Assessing classification reliability (posterior probability)

is crucial when identifying the cancer stage and therefore the appropriate treatment In this

scenario, the cost of a misclassified sample is unacceptable high (i.e., a patient will undergo

invasive procedures or chemotherapy when it is not needed). Existing methods are limited

to either calibrate the posterior probability on an aggregated decision value or obtain a

posterior probability for each base classifier and aggregate the result which is sub-optimal

both from quality and time complexity. In this chapter, we propose a method that takes

advantage of the distribution of the decision values from the base classifiers to summarize a

statistic which is subsequently used to generate the posterior probability. Three approaches

are considered to fit the probabilistic output to the statistic: the standard Gaussian CDF,

isotonic regression and linear logistic. Even though the results presented here use a bagged

SVM ensemble (Z-bag), our approach is not limited by the aggregation method selected, the

choice of base classifiers, nor the statistic used. These methods were proposed in [206].

3.1 Posterior probabilities based on z -score

To construct an SVM ensemble with posterior probability output we can simply apply the

existing naive Bayes [182, 118] approach to produce probabilistic output from a set of class

labels. Another natural attempt is to first build a collection of probabilistic single SVMs us-

ing the existing methods, and then aggregate them to a final posterior probability, similar to
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distribution summation [33, 3]. To illustrate this we considered the model proposed by Platt

and an isotonic regression model to estimate the posterior probability for each base classifier

in the bagging ensemble and then aggrgegate these probabilities using average. We define

these models as average Platt and average Isotonic, respectively. This is, however, compu-

tationally expensive and redundant especially in the case of average Platt, since it requires

parameter fitting for each base classifier. In addition, fitting a sigmoid to a bootstrapped

sample may in theory pose a problem, since it is very likely the class conditional decision

value distribution is abnormal due to duplicate instances in the bootstrap sampling with re-

placement. In contrast, what we propose here is a two-stage posterior probabilistic bagging

SVM ensemble system. The first stage is to aggregate the distribution of decision values from

base SVM classifiers to a summary statistic (z score), while the second stage is to model the

posterior probability given the statistic instead of the original input vector. As opposed to

the conventional approach where either the decision values are averaged heuristically before

modeling or each base classifier is modeled independently before averaging, we are proposing

a general approach from a distributional perspective (i.e., exploring the distribution of the

decision values to extract useful information for posterior probability modeling). We exem-

plify this approach with an SVM bagging ensemble by studying and exploring the empirical

distribution of decision values for subsequent posterior calibration.

As described in Section 2.3, an ensemble classifier is a collection of base classifiers. For

each base classifier k we consider the signed distance from the decision hyperplane:

Fk = Fk(x) =
f ∗k (x)

‖w∗k‖
(3.1)

where f ∗k (x) is the decision value (Eq. 2.14) of the k-th base classifier and w∗k is the coefficient

vector. Further we define a z score of the decision boundary (i.e., f ∗(x) = 0) with respect
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Figure 3.1: z score as confidence in the sign of F : Distribution of decision values from three different
samples from the wdbc data set. The curves are estimated using the mean and standard deviation fo the
signed F distances. The red line represents the decision boundary and the z score represents how likely is
for a sample to be on one side or the other of the decision boundary. For exmaple, both green sample and
brown sample belong to the same class, but the confidence of the ensemble predictions are very different.
All ensemble base classifiers agree on the class membership of the brown sample while a lot of them disagree
on the green sample. This different level of agreement is reflected in the z score. Source: [206].

to the distribution of the signed distances from the collection of base classifiers:

z = z(F ) =
0− µF
σF

= −µF
σF

(3.2)

where µF and σF are the mean and standard deviation of the signed distance for the same

sample over all the individual classifiers. This score represents how confident the sign of

F is (see Fig. 3.1). Note that we use F instead of f ∗ to calculate the z score, since a

slight change in the position of the decision boundary might result in a large leap in the

decision value f ∗, which will be over-weighted in computing z score. Since z score reflects

the confidence in the sign of F , thereby in the class label Y of a sample, we based our

posterior probabilistic ensemble on the approximation: p(Y = 1|X) ' p(Y = 1|z). We

consider three different approaches to estimate this probability: Gaussian fitting, logistic

fitting and Isotonic regression.
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3.1.1 Standard Gaussian CDF fitting

Our first approach directly estimates the posterior probability based on a voting schema.

The higher the number of votes a sample receives from each base classifier, the higher the

probability of that prediction. Therefore, our posterior probability estimate for a class given

the z score (i.e., p(Y = 1|z)) can be approximated by the voting percentage given the z

score (i.e., v(Y = 1|z)). Further, we assume that the set of F values for each instance de-

rived from the base classifiers follows a Gaussian distribution. This assumption is justified

by the empirical distributions obtained from multiple data sets (see Fig. 3.2). In addition, a

significant number of samples from various data sets from the UCI machine learning repos-

itory passed the Shapiro test for normality [162]. Using a Bonferroni corrected Shapiro

p-value, 80% of the wdbc test data, 78% of the australian test data and 90% the of spam

test data were not significantly different from the normal distribution at 5% significance. Un-

der this Gaussian approximation, the voting percentage can be calculated as the cumulative

distribution function (CDF) of the standard Gaussian distribution:

p(Y = 1|z) ' v(Y = 1|z) ' 1√
2π

∫ z

−∞
e−x

2/2 dx , (3.3)

In fact, direct plotting of v(y = 1|z) shows a very good fitting to the standard Gaussian CDF.

In Fig. 3.3, the distribution of the voting percentages represented by the black points follows

closely the Gaussian CDF probability estimation represented by the green curve.

3.1.2 Logistic fitting

As the second approach, we propose an extension of Platt’s [145] method similar to

boosting with Platt scaling [134] for bagging ensembles. The main difference between the

two methods is the base for the posterior probability modeling. For boosting, the model is

based on the weighted aggregated decision value, while for our bagging ensemble the model

is based on the summary statistic of the decision values (z score). The sigmoidal shape of
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Figure 3.2: Distribution of F values for individual samples: Each curve represents the F value
distribution for an individual instance from the testing data from one of the 3 data sets used here: wdbc,
australian and spam. Only a small portion of instances for each data set are shown here. Most of the curves
would be well approximated by a Gaussian: using a Bonferroni corrected Shapiro p-value, 80% of the wdbc
test data, 78% of the australian test data and 90% the of spam test data were not significantly different from
the normal distribution at 5% significance. Source: [206].

the estimated posterior probability given the z score (see the blue curve in Fig. 3.3) points

to a similar posterior probability model:

p(Y = 1|z) =
1

1 + eAz+B
(3.4)

The parametersA andB are determined using the maximum likelihood estimation (Eq. 2.17).

3.1.3 Isotonic regression

As the third method for obtaining the posterior probabilities, we apply the isotonic re-

gression [154, 210, 211, 134] on the z scores. The isotonic regressions assumes that:

Y (i) = c(zi) + ε (3.5)

where c is an isotonic (monotonically increasing) function. The solution is going to be a

piecewise constant monotonically increasing function:

ĉ = argmin
c

∑
(Y (i) − c(zi))2 (3.6)
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Figure 3.3: Comparison of fitted posterior probability models: Two fitted posterior probability models
(Gaussian CDF Z-bag in green and logistic linear Z-bag in orange) are compared with the real estimated
posterior probability (blue) and the voting percentage (represented as points in black). The comparison
is shown with regards to the z score (horizontal axis) on three different data sets (wdbc, australian and
spam). First, note that the distribution of the voting percentages (black points) follows quite accurately
the Gaussian CDF model (green). Second, in the case of australian data set, the Gaussian CDF model
(green) overestimates the posterior probabilities in regards to the real estimated probabilities (blue). The
real estimated posterior probability is computed using the real class labels through binning over the z
score. Source: [206].
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This function maps the summarized bagging statistic to calibrated posterior probabilities.

In comparison with the previous two methods, this approach is likely to yield 0 or 1 posterior

probabilities, which in fact are not well calibrated. Although additional corrections can be

applied to avoid such extreme values (e.g., round them to the closest non-extreme value), we

considered the raw output in our comparison.

3.2 Experiment design

To evaluate the SVM ensembles, we split each data set into two class-balanced sub-sets,

one for fitting the posterior probability model (training data) and one for evaluating the

model (testing data). The proposed testing procedure is described in Fig. 3.4. The non-

probabilistic models (single SVM and majority voting) are build directly on the training data

without the need for any other parameter tuning. To fit the proposed posterior probability

models we use 10-fold cross validation in order to compute an unbias set of signed distances

for each sample from the training data. Based on this set we estimate the parameters of

the proposed probabilistic models. The performance of each model is evaluated on the

testing data using: i) the number of prediction errors, ii) the negative logarithm likelihood

(− logLH) and by iii) direct comparison of the posterior probability output vectors from

each model. We used Friedman test followed by Nemenyi test for comparisons of multiple

models on multiple data sets, both for the model error rates and likelihoods, as recommended

in [41]. We also applied the binomial sign test for a pairwise comparison [164].

We evaluated our Z-bag approach on the ringnorm artificial data [20] and twelve data

sets from the UCI Machine Learning repository [7]: the MAGIC Gamma Telescope Data Set

(magic04 ), the ionosphere data set, the thyroid disease data set, the Contraceptive Method

Choice Data Set (cmc), the Letter Recognition Data Set (letters), the Wisconsin diagnostic

breast cancer data set (wdbc), Australian credit data set (australian), the spam email data

set, the adult income census data set, the pima Indians diabetes data set, the Wisconsin
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Figure 3.4: Procedure to asses the performance of the proposed bagging SVM ensem-
ble Source: [206].
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breast cancer data set (wbc), and the German credit data set (german). For the ringnorm

artificial data, we set the number of features to 5, and 2000 random samples for testing on

models with varying training size from 50 to 300. We converted the letters data set into

a binary classification problem by treating A-M as one class and N-Z as another. For the

thyroid data, we group class 1 and 2 as one class of size 284 and randomly sampled 284

samples from class 3 for training. And we randomly sampled 500 samples from each classes

as the total data for analysis for magic04. For all data sets, each feature is scaled to zero

mean and unit variance before evaluation. This allows to set the SVM kernel parameters

r and coeff0 to 1/p, as required by LIBSVM [27]. Table 3.1 shows the choice of training

parameters for each the data sets. On each data set the proposed SVM ensembles, Gaussian

CDF, logistic linear and Z isotonic, are compared with the single SVM, majority voting,

naive Bayes, average Platt and average Isotonic models.

3.3 Performance on artificial data

We use the artificial data to asses the performance of these models to estimate the real

posterior probabilities. For each probabilistic model we map (Fig. 3.5 and Fig. 3.6 for

training size of 50 and 300, respectively) the estimated posterior probabilities to the real

ones. An ideal estimation of the posterior probability will display a perfect correlation of

estimated and real probabilities (i.e., the points in Fig. 3.5 will follow the red diagonal).

Independent of the training sample size, the naive Bayes model not only achieves poor

estimation of posterior probabilities (the samples are far away from the diagonal), but also

displays extreme outputs very close to 0 or 1. Similarly, the Gaussian CDF model may not

be appropriate for this type of data, since the low accuracy of bagging on this data may

lead to a poor approximation in Eq. 3.3. The Z-score isotonic model displays its piecewise

constant nature and therefore obtains a poor correlation to the real probabilities. Taking the

mean of the bagged isotonic probabilities, the average Isotonic does not display the same
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Data set
Training
size

Testing
size

Ensemble
size

Kernel parameters
type C r degree coeff0

wdbc 56 513 201
L 10
P 10 1/30 2 1/30
R 10 1/30

australian 137 553 201
L 1
P 1 1/14 3 1/14
R 1 1/14

spam 919 3682 51
L 10
P 10 1/57 2 1/57
R 10 1/57

adult 1605 15060 101
L 5
P 5 1/14 2 1/14
R 5 1/14

pima 76 692 501
L 1
P 1 1/8 2 1/8
R 1 1/8

wbc 67 616 501
L 1
P 1 1/10 2 1/10
R 1 1/10

german 100 900 501
L 1
P 1 1/24 2 1/24
R 1 1/24

magic04 100 900 51
L 5
P 5 1/10 2 1/10
R 5 1/10

ionosphere 70 281 101
L 4
P 4 1/33 2 1/33
R 4 1/33

thyroid 568 3428 51
L 0.00001
P 0.00001 1/21 2 1/21
R 0.00001 1/21

cmc 287 675 101
L 1
P 1 1/9 2 1/9
R 1 1/9

letters 199 19801 51
L 10
P 10 1/16 3 1/16
R 10 1/16

Table 3.1: SVM model parameters and data sets summary: linear (L), polynomial (P), and radial
basis (R) represent the SVM kernels. The cost C and degree are tuned through cross validation, while r and
coeff0 are set to 1/p, where p is the number of features of the data set.
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Figure 3.5: Comparison of estimated posterior with true posterior on ringnorm data with sample
size of 50. A perfect estimation will follow the red diagonal. The Naive Bayes outputs extreme probabilities
and achieve very poor correlation to the true probabilities. The isotonic model exhibits it’s piece-wise nature,
while the average isotonic by taking the average over the bagged probabilities does not display the same
nature and achieves a better correlation. This model, toghether with average Platt and logistic linear, tend
to underestimate the posterior probability at extreme values. For hard to classify samples, with true posterior
of 0.5, the logistic linear model performs best. Source: [206].
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Figure 3.6: Comparison of estimated posterior with true posterior on ringnorm data with sample
size of 300. Similar to the comparison with fewer samples, the Naive Bayes achieve very poor correlation
to the true probabilities by outputting extreme probabilities. The isotonic model is of piece-wise nature.
With increased sample size, the other three models perform the best again with an even better correlation
to the true probabilities. Source: [206].

nature and achieves better correlation. This model, toghether with average Platt and logistic

linear, tend to underestimate the posterior probability at extreme values which is due to the

nature of bagging that requires most of the base classifiers to agree for these predictions.

The variance introduced by bagging reduces the chances for such a unanimous decision.

In contrast, when considering samples that are hard to classify (true posterior probability

around 0.5) the logistic linear performs better than the other two methods. The distribution

of the samples closer to the diagonal supports this observation (Fig. 3.5). All these three

models perform better when the sample size is increased to 300 samples (Fig.3.6) exhibiting

the same trend of underestimation of probabilities at extremes and a better performance for

the logistic linear model for samples with a true probability around 0.5. In addition both

average Platt and logistic linear tend to yeild lower estimates in comparison to the average

Isotonic model for samples with extreme posterior probabilities.
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Besides the direct comparison against the true posterior probability we recorded the mean

square error (MSE) as a function of the training sample sizes (left side of Fig. 3.7). Naive

Bayes performs consistently worse than the other models, since it not only bears unrealistic

assumption on the independence of base classifiers but also needs a large training data

set to estimate a reliable prior class probabilities and class conditional probabilities. In

contrast, the average Isotonic model is consistently ranked the best against all the other

models which goes against the previous observation that the logistic linear model performs

better for samples prone to misclassification (see the scatter plot comparison in previous

paragraph). To further investigate this phenomenon we consider a subset of the testing data

that has a true posterior probability between 0.2 and 0.8 (right side of Fig. 3.7). On this

subset we note that logistic linear model is indeed ranked as the best model and therefore

is confirms the observation that it performs better on samples that are harder to classify.

The average isotonic model performs better than the logistic linear due to the nature of the

ringnorm data set used as base for this experiment which tends to have samples with extreme

posterior probabilities (out of 2000 samples, 54% have a posterior above 0.9 or below 0.1,

and 74% above 0.8 or below 0.2). Furthermore, such comparison is also dependent on the

measure used for comapirson. We use MSE because it can be applied to any model which

is not true for Kullback-Leibler divergence which is not suitable for models that produce 0

or 1 probabilities. For example, with a training sample size of 50, the logistic linear model

achieves the best Kullback-Leibler divergence measure (0.46) in comparison to averaged Platt

(0.66) and average Isotonic (0.49).

3.4 Accuracy of the predictions on benchmark data

sets from the UCI machine learning repository

In terms of prediction accuracy, we used the error rate to compare the performance of

Z-bag with the existing methods. For each data set and method combination we compute
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Figure 3.7: Performance on ringnorm artificial data: Left panel gives mean squared error (MSE) for
each models; the right panel shows MSE when testing samples are restricted to having a true posterior within
0.2 to 0.8. Source: [206].

the error rate for three different kernel types (Table 3.2) and select the kernel with best

performance as representative for the subsequent model comparison. Evidently, the model

that yields the smallest number of errors is the better model. However, to quantify the

significance of Z-bag ’s performance increase we ranked the performance of the models on each

data set and computed the average rank over all data sets for each model. This averaged

rank gives an ordering of all models in terms of prediction accuracy. To further assess the

statistical significance of differences between the models, we used Friedman test for multiple

classifier comparison, followed by the post-hoc Nemenyi test on all pairwise classifiers, as

recommended in [41].

Logistic linear ranks as the best model overall (average rank 2.5) followed by Gaussian

CDF (3.67) and average Isotonic (3.88). The Friedman test over all the models suggest a

significant difference among them (p = 7.5e−4). To locate the difference we used the Nemenyi

test which in our case (number of data sets and models) has a critical difference among

average ranks of 3.03 at 5% significance. Using this critical threshold we note that the single

SVM is significant different than averaged Platt, averaged Isotonic and logistic linear. This

result is expected as classifier ensembles are expected to generally perform better that single
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classifiers. With a less stringent threshold of 10% the difference between naive Bayes and

logistic linear becomes significant. Even though, there is no significant difference between

the proposed models and the existing ones, a simple win-tie-lose quantifies the performance

increase. The logistic model achieves a score of 9-1-2 against naive Bayes, 10-0-2 against

averaged Platt and 8-1-3 against averaged Isotonic. The fact that logistic linear ranks the

best is in accordance with our expectation from the artificial data. In Section 3.3 we showed

that logistic linear works best on samples with true posterior probability around 0.5 which

is generally encountered in real world data sets.

3.5 Quality of the posterior probability estimates on

benchmark data sets from the UCI machine learn-

ing repository

The quality of the posterior probability estimates was assessed using the negative log

likelihood for the test data and pair-wise comparison of the probability of predicting the

correct class. The probability of predicting the correct class, based on a given posterior

probability, is equal to the posterior probability for a correctly classified sample and one

minus the posterior probability for a misclassified sample.

A common measure used to evaluate the performance of a classifier that provides posterior

probability estimates is the negative log likelihood of predicting the correct class over the

entire test data set. This is calculated as:

−logLH = − log
n∏
i=1

P
(
y = Y (i)|x(i)

)
= −

n∑
i=1

logP
(
y = Y (i)|x(i)

)
(3.7)

Since the product above is a product of probabilities, all the factors are less than or equal

to 1. This means the product will be less than 1 and the negative log of the entire product

will be non-negative. Ideally all the input vectors will be assigned to their correct class with
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Data K
single
SVM

Ensemble

majority
voting

Probabilistic
Existing Z-bag

Naive
Bayes

averaged
Platt

averaged
Iso-
tonic

Gaussian
CDF

logistic
linear

Z-score
iso-
tonic

wdbc
L 408 39 36 37 37 35 33 33 5

P 66 69 74 82 66 73 82 84
R 42 27 2.5 33 5 33 5 36 7 23 1 27 2.5 35

australian
L 80 70 1 74 5.5 72 2.5 72 2.5 73 4 74 5.5 75 7.5

P 113 105 95 87 85 104 88 92
R 75 7.5 79 76 77 79 80 80 80

spam
L 320 292 291 301 287 288 292 330
P 348 328 323 324 289 323 327 324
R 293 8 285 6 278 4 271 1 273 2 286 7 274 3 283 5

adult
L 24017 2384 2566 2400 2382 2381 2370 2380
P 2414 2339 3 2464 8 2384 2360 2335 2327

1.5
2344 4

R 2427 2340 2474 2363 6 2357 5 2327
1.5

2344 2405

pima
L 204 8 198 7 198 197 5.5 195 4 193 2.5 197 193 2.5

P 216 207 197 5.5 203 197 204 190 1 218
R 217 209 203 209 208 207 206 200

wbc
L 27 20 19 3.5 22 19 3.5 19 3.5 19 3.5 18 1

P 32 30 27 28 19 28 24 25
R 20 7 20 7 20 20 7 21 20 21 24

german
L 278 239 3 259 244 5 238 2 239 242 4 260
P 268 241 258 7 255 242 230 1 268 248 6

R 259 8 270 266 268 269 270 270 270

magic04
L 232 229 231 235 234 240 230 246
P 231 235 224 221 4 219 3 235 216 1 218 2

R 229 8 223 6 223 6 225 224 223 6 228 221

ionosphere
L 54 41 30 41 38 46 27 32
P 54 61 53 45 25 2 61 28 30
R 29 5 31 8 30 6.5 28 4 29 30 6.5 18 1 27 3

thyroid
L 131 6.5 131 6.5 124 4 111 2 113 3 129 5 94 1 135 8

P 194 163 173 181 209 167 181 235
R 191 155 144 115 125 147 102 145

cmc
L 204 202 207 201 202 198 198 203
P 194 185 204 186 188 6.5 183 185 194
R 185 4 180 1 188 6.5 186 5 189 182 3 181 2 191 8

letters
L 6180 5938 5951 6054 6028 6025 6039 6229
P 4737 4637 4624 4694 4711 4609 4630 4653
R 4347 7 4204 2 4194 1 4314 5 4332 6 4280 3 4295 4 4572 8

Average
rank

7.000 4.417 5.208 4.333 3.875 3.667 2.500 5.000

Table 3.2: Error rate comparison: We record the number of errors (lower is better) on of the twelve
UCI data sets for each kernel type: linear (L), polynomial (P), and radial basis (R). The models shaded in
gray, are the best model for each data set and method combination. This is the model used subsequently to
compare the methods. For each data set the models are ranked based on the number of errors (the supper
script marks the rank). In case of ties, all tied methods receive the same rank obtained by averaging their
respective order in the ranking. Both Gaussian CDF Z-bag and logistic linear Z-bag achieve a better average
rank over all data sets compared to any of the existing methods.
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a posterior probability close to 1, which will yield a product close to 1 and a log close to 0.

Therefore, the lower the negative log likelihood the better the classifier. The results based

on the likelihood from the six probabilistic models are summarized in the Table 3.3. As

mentioned in Section 3.1, models employing isotonic regression are likely to have probability

outputs of exactly 0, that yields an undefined logarithm (these vales are marked ND in

Table 3.3). In addition to isotonic regression, naive Bayes and occationally Gaussian CDF

can produce such extreme probabilities. Note that such cases of undefined logarithm do not

imply a weaker performance.

Our first comparison includes the data sets and models that have a defined logarithm

likelihood for all three kernels used. Four models (average platt, average Isotonic,Gaussian

CDF and logistic linear) out of six models on seven out of twelve data sets satisfy this

condition. We followed a similar approach to the error rate comparison. The average Isotonic

model ranks as the best model, followed by logistic linear (the win-tie-lose is 4-0-3). The

overall Friedman p-value is 0.011, and the critical threshold of Nemenyi test is 1.77 (5%),

suggesting a significant difference between average Isotonic and Gaussian CDF. In fact the

Gaussian CDF model has the worst ranking among the four since it requires stringent

assumptions that need to be checked for each specific data set. Therefore, Gaussian CDF

is not a general purpose model in terms of estimating posterior probability. The good

performance of the averaged Isotonic model on the total likelihood is consistent with our

analysis of the total MSE on artificial data. If we exclude the non-general purpose Gaussian

CDF model, the Friedman test shows no significant difference among the remaining three

models (p = 0.16). To take advantage of all data sets we compare averaged Platt and logistic

linear on all data sets. These two models were selected because they do not produce any

undefined likelihood measure. To avoid assuming commensurability of log likelihood scores

on different data sets, we apply a nonparametric binomial sign test for the comparison. The

logistic linear model outperforms average Platt on 10 out of 12 data sets, representing a

significance p-value of 0.0386.
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Although naive Bayes and z-score isotonic have undefined likelihood measure for most

of the data sets, the naive Bayes defines it for the ionosphere data set, and z-score isotonic

for the german data set (see Table 3.3). The poor likelihood measure of naive Bayes on

ionosphere data is consistent with our observation on the artificial data that it tends to

predict extreme posterior probability even for misclassified samples. The likelihood of z-

score isotonic on german data set is on par with the other models and we expect it to

improve with larger training data sets (as observed from artificial data).

In order to further investigate the relationship between these models on estimating poste-

rior probabilities, we performed a direct comparison of the probability to predict the correct

class (shown in Fig. 3.8). This figure contains a direct comparison of logistic linear against

Gaussian CDF, average Platt and average Isotonic respectively. The left panel shows that the

posterior probabilities yielded by the Gaussian CDF Z-bag method are consistently higher

than the ones provided by logistic linear. The middle panel reveals good agreement between

logistic linear and average Platt. All three comparisons indicate that the logistic linear model

gives better posterior estimation for samples prone to misclassification (e.g. samples in the

lower-left qudrant with low posterior of correct class for both models) which agrees with our

evidence from artificial data.

Although the experiments indicate that the Gaussian CDF model would generate higher

posterior probabilities than any of the other methods, the theory does not support it. One

can imagine a case where parameter B is set to 0 and parameter A is smaller than −
√

8/π

in Eq. 3.4. This yields the logistic linear derivative in the origin larger the Gaussian CDF

one, which means that the former will assign higher posterior probabilities than the latter.

Same argument stands in the comparison of Gaussian CDF against average Platt, as the

latter is essentially a summation over a set of logistic linear models.

To summarize, logistic linear model performs very well in terms of both error rate (ranked

best) and likelihood (ranked second best). It significantly outperforms average Platt model

on likelihood measure. The Gaussian CDF model is generally applicable for classification
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Data K

Ensemble
Existing Z-bag

Naive
Bayes

averaged
Platt

averaged
Isotonic

Gaussian
CDF

logistic
linear

Z-score
isotonic

spam
L ND 901.32 783.38 865.83 4 828.28 3 ND
P ND 1001.92 833.82 3824.02 1175.03 ND
R ND 779.75 2 775.42 1 1661.41 879.65 ND

adult
L ND 5300.65 5198.07 5913.53 4 5388.71 ND
P ND 5295.32 3 5186.89 1 6859.94 5423.72 ND
R ND 5316.44 5251.16 6505.27 5280.66 2 ND

pima
L ND 390.16 386.169 485.85 4 381.782 ND
P ND 386.78 380.499 645.31 374.32 1 ND
R ND 380.43 3 379.63 2 607.23 377.23 ND

german
L ND 485.39 4 473.14 1 482.226 483.88 3 ND
P ND 499.431 479.632 481.67 2 508.189 511.17
R ND 526.237 525.182 1599.06 551.469 539.92

magic04
L ND 493.49 491.49 627.81 492.363 ND
P ND 464.42 467.148 583.84 459.074 ND
R ND 450.10 3 448.79 2 554.33 4 435.00 1 ND

cmc
L ND 379.64 385.684 821.098 382.544 ND
P ND 391.448 394.487 763.98 4 386.521 ND
R ND 371.95 3 370.41 2 925.052 367.94 1 ND

letters
L ND 11280.3 11303.7 16006.3 11305 ND
P ND 9808.55 9657.19 9855.27 9584.38 ND
R ND 8917.09 1 8962.61 2 9791.87 4 9015.15 3 ND

Average
rank

2.714 1.571 3.714 2.000

wdbc
L ND 89.46 ND 81.068 84.35 ND
P ND 193.10 175.22 190.6 195.75 ND
R ND 115.69 98.19 92.61 112.57 ND

australian
L ND 201.21 192.96 269.9 199.29 ND
P ND 217.95 ND 591.77 219.45 ND
R ND 200.21 207.71 492.78 203.32 ND

wbc
L ND 73.0148 52.6096 67.7347 68.3488 ND
P ND 92.344 54.042 204.427 71.783 ND
R ND 79.253 ND 124.393 84.0036 ND

ionosphere
L ND 114.31 96.27 104.82 87.28 ND
P 6181 97.676 70.555 488.55 83.328 ND
R 5547 68.597 ND 225.804 66.126 ND

thyroid
L ND 773.897 ND 3273.57 533.688 ND
P ND 960.615 ND 2346.45 759.295 ND
R ND 889.77 ND ND 621 ND

Table 3.3: Posterior probability estimates comparison: The table contains the results obtained using
the negative log likelihood measure. Models marked with gray represent the best model for that respective
combination of data set and method. The average rank is computed for the four models in the middle on
the top where data sets, where the superscript number gives the particular ranking. ”ND” represents ”not
defined” for the negative log likelihood.
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Figure 3.8: Pair-wise comparison of the probability to predict the correct class: The probabil-
ity to predict the correct class is the posterior probability for a correctly classified sample and one minus
the posterior probability for a misclassified sample. The upper right quadrant in each panel is where both
models make a correct classification, the lower left quadrant is where both misclassify, and they do not
agree for the others. The middle panel shows that there is a good agreement between the posterior prob-
abilities given by averaged Platt and logistic linear Z-bag models. The left panel shows that the posterior
probabilities given by the Gaussian CDF Z-bag are consistently higher than those generated from logistic
linear Z-bag (i.e., above the diagonal in the upper right quadrant and bellow the diagonal in the lower left
quadrant). All panels suggest that logistic linear Z-bag is better at estimating posterior for samples prone
to misclassification. Source: [206].

purpose (ranked second best), but in the estimation of posterior it needs stringent assump-

tions that might not be satisfied by all data sets. The Z-score Isotonic model does not

perform well in general, but can be improved with a larger sample size. Average Isotonic

performs good (ranked third best on error rate and best on likelihood), despite its limita-

tion with small size training sets. This maybe attributed to the combining effect of bagging

averaging (reducing variance) and isotonic regression (reducing bias toward a specific logis-

tic sigmoid, as opposed to the Platt model). The average Platt model achieves similar but

worse performance than the logistic linear model. The naive Bayes model may be used for

classification but yields poor posterior probability estimation. Another advantage that these

measures do not capture is the reduced computational complexity of the logistic linear Z-bag

model. That is, in the case of the average Platt, one logistic model needs to be fitted to each

of the bootstrap samples. If we consider the time complexity of fitting one logistic model

to be O(Φ(n)), then the overall complexity of the average Platt method will be O(k ∗Φ(n))

where k is the number of base classifiers. This process is time consuming and redundant.
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The logistic linear Z-bag only fits one logistic model on the statistic generated from the out-

puts of all the base classifiers and hence the complexity of the logistic linear model will be

O(Φ(n)). Therefore the complexity is reduced by a factor equal to the size of the ensemble.

In addition, fitting a sigmoid to a bootstrapped sample may in theory be invalid due to

duplicate instances. Furthermore, bagging is a variance reduction technique, and in the case

of the averaged Platt model, the variance reduction happens at the final step of averaging

the posterior probabilities obtained from the base classifiers. This is another key distinction

from our logistic linear Z-bag method where the z score is used to absorb the variance from

the decision values before we fit a probabilistic model. The variance of z statistic is reduced

by the number of bootstrapped samples compared to the one of the decision values.

3.6 z -score drawbacks, alternative statistics and limi-

tations

Since we base our posterior probability models on the z score, it becomes vital to the

performance of the models. The way a set of SVM classifiers is constructed influences the z

score value. Factors such as the size of the bootstrap sample and the number of bootstrap

samples have a significant influence. In our analysis, we keep the value of these factors

constant in all models for comparison purposes. However, we did explore some of these

concerns. We analyzed the change of the z score with regards to the number of bootstrap

samples. The wdbc test data set was considered as testbed (see Fig. 3.9). The z score pattern

achieves relative stability after the number of bootstrap samples exceeds 50. The correlation

coefficient between the z score patterned obtained with 50 bootstrapped samples and 500

bootstrapped samples is 0.99. Further experiments are needed to assess this and other

factors affecting the z score and thereby the performance of proposed models. In addition, z

score may not be a sufficient summary statistic to capture all the information carried by the

decision values of a set of SVM classifiers and the way they were obtained. For instance, one
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parameter that could be taken into consideration is the number of bootstrapped samples.

A simple way to incorporate this is to replace the z score with the t statistic and consider

the number of bootstrap samples as the degrees of freedom. This is, however, not necessary

in our analysis since the smallest number of bootstrap samples we used was 51, and it is

generally accepted that the t-distribution closely approximates standard normal distribution

when the sample size exceeds 30. Nevertheless, incorporating other variables or replacing

the statistic is currently under investigation.

Even though we used bagging as example for our framework, the same approach can be

applied to a variety of ensemble systems. The main limitation is the ability to identify the

distribution that best characterizes the decision values of the base classifiers. In addition, it

is also important to select an appropriate summary statistic that is able to extract adequate

information for the posterior probability modeling.

3.7 Summary

Ensemble classifier methods were proven to achieve better classification accuracy than

single classifiers. Estimating confidence measures for the prediction are essential in a number

of applications such as biomedical and diagnostics applications. The existing methods for

generating posterior probabilities for classification ensembles are designed to either combine

the base classifier probability outputs or to calibrate the aggregated decision value. The

first category are likely to be computational intensive due to the requirement of fitting a

posterior probability model for each base classifier while the second category were developed

from the need to recover some of the information lost through the aggregation process. In this

chapter, we proposed a method that extracts additional information from the decision values

of the base classifiers to fit a single posterior probability model. The method uses bagging

to construct an ensemble with SVM as base classifiers and the z statistic to summarize the

decision values of the base classifiers, hence Z-bag. To fit the probabilistic outputs to the
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Figure 3.9: z score pattern stabilization: We present the variation of the z score with respect to the
number of bootstrap samples (BS). Each circle is a specific instance from the wdbc testing data and the
vertical red line separates the two classes. The Pearson correlation (corr) is computed between each of the
first 5 z score patterns and the last one. Notice that while there are visual differences between the top three
graphics (BS < 50), the differences are not present between any of the graphics with BS ≥ 50. Moreover,
the correlation coefficient between any model with BS ≥ 50 and BS = 501 is 0.99 or better. Source: [206].
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statistic, we considered three variations: Gaussian CDF, logistic linear and Z-score Isotonic.

The logistic linear model is generally preferred because of the stable good performance, better

performance at estimating posterior probability for samples prone to misclassification, and

improved computational cost. Alternatively, the Gaussian CDF Z-bag model is easier to

be implemented without further parameter training and it ranks as second best in terms

of accuracy while estimation of posterior can be appropriate if some conditions met. In

conclusion, these approaches achieve comparable or better prediction accuracy and posterior

probability estimation in comparison with the existing ensemble calibration methods while

reducing computational cost.
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Chapter 4 Patient subtyping using classifi-

cation uncertainty

Even though, the Support Vector Machines (SVMs) [18, 36, 191] have been shown to

work well in a large number of applications, they are unable to identify previously unknown

conditions. In a recent paper in New England Journal of Medicine [15], and a follow-up in

New York Times,1 Bleyer and Welch point out that after the introduction of early screening,

an additional 1.5 million women received a diagnoses of early-stage breast cancer. As the

authors point out, this would be very good news if the number of women diagnosed with late-

stage cancer also dropped by 1.5 million. However, the late-stage diagnosis dropped by only

0.1 million, suggesting that 1.4 million women received treatments – most of which included

surgery, chemotherapy or radiation – for a “cancer” that was never going to make them

sick. The ability to correctly identify and profile disease subtypes and patient subgroups

is a pre-condition to the ability to distinguish between patients who are sick and need the

most aggressive treatments available and those who will never progress, recur, or develop

resistance.

This chapter describes the methods we proposed to address this problem. As mention

above, one of the most common classification technique, the SVM, is unable to recognize

cases that were unknown during training. Here we propose the identification of a region

where the SVM prediction should not be trusted, an uncertainty region that will identify

possible unknown sub-groups of the population. Even though there has been done work in

this direction, all existing methods require the setting of specific costs that are not trivial to

compute. The key contribution here is a fully automatic method to reject these uncertain

samples.

1http://www.nytimes.com/2012/11/22/opinion/cancer-survivor-or-victim-of-overdiagnosis.html

http://www.nytimes.com/2012/11/22/opinion/cancer-survivor-or-victim-of-overdiagnosis.html
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4.1 Related work on classification with rejection

The first seminal work that considers a rejection option, and given the true conditional

probability η(x), formulates the optimal rejection rule, is the work of Chow [31]. Since then,

rejection option has been considered for many probabilistic classifiers [86]. One of the early

works for increasing the reliability of SVMs by thresholding can be found in [132], which

computes an empirical distribution of the margin based on the training data and removes

the top α% of the margin closest to zero regardless of the label Y . Later applications of

thresholding have confirmed the effectiveness of this approach for including a rejection option

([184, 197]). However, how to choose an optimal threshold has not been clear. Since choosing

any threshold τ > 0 from the output of the hinge loss is not infinite sample consistent

(Classification-Caliberated) [9], the natural evolution was to develop surrogate convex loss

functions that replace the standard hinge loss used in SVM to support a rejection option [9,

209, 81, 201]. However all existing methods require an extended cost matrix, or equivalently,

require a threshold of the true conditional probability η(x), to be explicitly defined a priori.

Furthermore, these surrogate convex losses create twice as many constraints compared to the

standard hinge loss, and as such require more samples to reach the same level of accuracy.

Given that in most practical applications, deriving with an appropriate extended cost matrix

is not trivial, it is worthwhile to forego infinite sample consistency for an adaptive threshold

adjustment based on the empirical error.

4.2 Uncertainty based on USVM margin

The geometric margin γ of SVM decision hyperplane with regards to the training data

set is given by Eq. 2.15. The a geometric, by definition, is the minimal distance between any

point in the training set and the hyperplane. We will consider the subspace of the feature
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Figure 4.1: An example showing how the uncertainty region U (the hashed region) is determined in the
feature space using γ. The thick line stands for the hyperplane constructed by the SVM classifier. Note
that, the distance between the hyperplane and the closest point of each class is constant. This constant is
in fact γ The band-line uncertainty area in the feature space will be warped to a generally non-linear area
in the input space by the inverse kernel mapping much as the linear boundary in the feature space will be
warped to a non-linear one in the input space. Source: [197].

space with the property:

− γ ≤ f(x) ≤ γ (4.1)

This subspace will include the set of points that are situated at a distance from the class

boundary which is less than or equal to the distance from the boundary to the closest point

in the training set. Clearly, the training set contains no evidence that the points in this area

belong to a class rather than the other one. This area is defined as the uncertainty region

U :

U ≡ {x ∈ Rn | −γ ≤ f(x) ≤ γ} (4.2)

and is graphically illustrated in Fig. 4.1. This however imposes a hard threshold which does

not permit to incorporate specific costs for uncertainty or misclassification. This can be

achieve by the addition of the threshold parameter τ that can be used to input the different

costs:

U ≡ {x ∈ Rn | |f(x)| ≤ τ · γ}

The value of the threshold τ can be automatically computes using the method in 4.4.
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4.2.1 Iris data set example

We illustrate the concept of uncertainty region using the Iris data set [64] from the UCI

repository [7] using the threshold τ = 1. The data set consists of 150 samples, where each

sample is described using four attributes: i) petal length, ii) petal width, iii) sepal length and

iv) sepal width. The samples are divided into three classes: i) setosa, ii) virginica and iii)

versicolor. Among the three classes, setosa and versicolor are linearly separable using petal

length and sepal length, whereas virginica and versicolor are non-linearly separable using the

same attributes.

We used an SVM classifier with both linear and Gaussian kernels when training on se-

tosa vs. versicolor (linearly separable classes), whereas only the Gaussian kernel was used

for classifying versicolor and virginica (non-linearly separable classes). Fig. 4.2 shows the

classification results with and without identifying the uncertain regions using γ. When un-

certainty areas are not identified, the classifier always assigns a test point to one of the two

classes (either red or black regions in Fig. 4.2(a) and Fig. 4.2(c)). For example, the training

points do not really provide enough information to reliably determine the class membership

of point A. Nevertheless, the classical SVM assigns it to one of the classes without providing

any feedback to the user that the label of this point is somewhat less trustworthy than the

label of a test point in the middle of one of the classes (like point B in Fig. 4.2(a)). Fig. 4.2(c)

shows the classical SVM with a Gaussian kernel. Point C is classified as blue although the

data would suggest it is more likely to belong to the green class. Point B and similar points

in the same direction all the way to infinity will also be classified as blue although they are

very different from all training points in either class. Finally, the class label for point A will

depend on the exact location of the decision hyperplane, determined by tuning parameters,

rather than by the distribution of the patterns in the training set. Once the uncertainty ar-

eas have been calculated (shown in white in Fig. 4.2(b) and Fig. 4.2(d)), a test sample from

those regions will not be assigned to any of the two classes. This will be the way in which the
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(a) (b)

(c) (d)

Figure 4.2: Application of soft margin SVM to classify linearly separable setosa and versicolor classes from
the Iris data set with and without uncertainty region using linear and Gaussian kernel. The attributes
sepal length and petal length were used for classification. (a): The classical SVM using a linear kernel with
no uncertainty zone. The training points do not really provide enough information to reliably determine
the class membership of point A. Nevertheless, the trained SVM assigns it to one class without providing
feedback to the user that the label of this point is somewhat less trustworthy than the label of a test point
in the middle of one of the classes like point D. (b): SVM with a linear kernel and with the uncertainty
region. The trained SVM will decline to classify point A and all other points in the uncertainty region. (c):
The classical SVM with a Gaussian kernel. Point C is classified as blue although the data would suggest
it is more likely to belong to the green class. Point B and similar points in the same direction will also be
classified as blue although they are very different from all training points in either class. The classification
of point A will depend on the exact location of the boundary and tuning parameters rather than on the
distribution of the patterns in the training set. (d) The SVM with a Gaussian kernel and uncertainty areas.
Points A, B and C are all classified as uncertain conveying to the user, the self-detected limitations of the
classifier. Source: [197].

.
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classifier will convey to the user that the point may be classified in either class (in-between

classes) or that the point is very unlike any of the instances in the training set (towards

infinity in any direction, far from any training point). Note that when a linear kernel is used,

the problem is not completely solved since a test sample very far from the hyperplane can

still be classified into one of the classes. In other words, even with the uncertainty region

in the proximity of the hyperplane, the region corresponding to each class still extends to

infinity. However, when a Gaussian kernel is used, the region corresponding to each class is

bounded as shown in Fig. 4.2(d).

When training a SVM to classify virginica and versicolor classes from the Iris data set,

we only used a Gaussian kernel because we knew a priori that the data is not linearly

separable. Figure 4.3 shows the results with and without the uncertainty regions. Notice

that when the uncertainty region is not determined, SVM misclassifies 5 out of 100 training

samples. However, when uncertainty region is determined, SVM misclassifies only 2 training

samples and does not classify 7 samples to any classes. In addition, when the uncertainty

region is not identified, the region corresponding to one of the classes is bounded, while the

region corresponding to the other class occupies the rest of the space. However, when the

uncertainty region is identified, the region corresponding to each class is bounded.

4.3 Uncertainty based on posterior probability

Since the output of SVM, f ∗(x), is not a probabilistic measure, one of the calibration

methods discussed in Section 2.2 can be used to obtain probabilistic scores. Subsequently,

the uncertainty areas can be defined using these probabilities. Here, we have opted for Platt’s

scaling since it is more efficient than the counterpart isotonic regression method [135]. As

describe in Section 2.2, Platt’s scaling is a parametric calibration method which approximates

the posterior probabilities by fitting the output of the SVM to a sigmoidal function (Eq. 2.16)

. In our experiments, we used the Platt scaling [122] implementation available in the LIBSVM
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(a) (b)

Figure 4.3: Application of soft margin SVM to classify non-linearly separable versicolor and virginica classes
from the Iris data set without uncertainty region (a), and with uncertainty region (b), using a Gaussian
kernel. The attributes sepal length and petal length were used for classification. Any test sample that is in
the uncertainty region (white) is not assigned to either of the classes. Source: [197].

package [28].

We define our uncertainty regions based on the class-dependent posterior probabilities.

Any sample with posterior probability bellow the threshold τ is uncertain:

U = {x ∈ Rn, Yx ∈ {−1,+1} | P (Y = Yx | x) < τ}

The value of the threshold τ will be computed by the method described in the next

section.

4.4 Automatic detection of uncertainty

Both methods for defining uncertainty regions are dependent on the adequate selection

of the threshold τ . This threshold represents the trade-off between obtaining uncertain or

incorrectly classified samples, and is controlled by their respective costs. The problem we

address in this section is the automatic detection of the data-dependent threshold.
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prediction
incorrect correct

uncertain a b
certain c d

Figure 4.4: To evaluate the effectiveness of using uncertainty we consider the contingency table between
correct/incorrect prediction and uncertain/certain label. For us, the true positives will be a which represents
the incorrect predictions that fall in the uncertainty regions. Hence, the precision, recall, and enrichment
are defined in terms of a.

In the process of selecting a threshold, our goal is to eliminate as many incorrect exam-

ples as possible (by declaring them as uncertain) without eliminating any correct samples.

Hence, we define true positives as the incorrect samples that are in the uncertainty region

(Fig. 4.4). The precision, in this case, is defined as the percentage of examples in the un-

certain region that are incorrectly classified (Prec = a
a+b

). The recall is the percentage of

incorrectly classified examples in the uncertain regions as a fraction of the total incorrectly

classified (Rec = a
a+c

). Our goal is to simultaneously maximize the precision and recall. This

can be achieved by maximizing the F1 measure [189], which is the weighted harmonic mean

of precision and recall (F1 = 2·Prec·Rec
Prec+Rec

). We automatically choose the optimal threshold τ ,

as the threshold that achieves the best F1 measure over all possible threshold values deter-

minable by the training set. In addition, the generalized F measure, Fβ = (1+β2)Prec·Rec
(β2Prec)+Rec

,

offers the possibility of selecting a bias towards the precision or recall. Hence, it allows the

user to input domain specific knowledge in the automatic selection of the threshold.

Another method for automatic selection of the threshold is to compute the enrichment

of the incorrect examples in the uncertainty region. This can be achieved using the Fisher’s

exact test [62]. The probability of obtaining the observed number of incorrect samples in

the uncertainty region just by chance follows a hypergeometric distribution:

P (X = a) =

(
a+b
a

)(
c+d
c

)(
n
a+c

) =
(a+ b)!(c+ d)!(a+ c)!(b+ d)!

a!b!c!d!n!

where n = a + b + c + d. The probability of observing more than a incorrect examples in

the uncertainty region is P (X > a) = 1 −
∑a

i=0 P (X = i). By minimizing this measure,
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we provide the uncertainty region that incorporates the most incorrect examples while also

preserving the largest number of correctly classified examples, and therefore the best choice

of threshold τ .

Independent of the method for automatic selection of the threshold, our method deter-

mines uncertainty regions in the SVM prediction. We will refer to it as SVM with uncertainty

or USVM.

4.5 Performance on artificial data

We used the artificial data to analyze the behavior of the uncertainty threshold under

different degrees of overlap between the classes. We used two types of artificial data sets.

The first type consists of two gaussians with the same standard deviation (σ) and various

distances between their two means ranging from 50% to 300% of σ. Two examples of feature

generation are presented in Fig. 4.5(a) and Fig. 4.5(b). This data set is called the twonorm

data set. The second type of artificial data sets is also made up of two gaussians with

one mode completely overlapping the other. This data set is called the ringnorm data

set (Fig. 4.5(c)). For each artificial data set we generate 500 samples equally divided in the

two classes and trained an L2 regularized hinge loss SVM model with an Gaussian kernel. The

best parameters (γ∗, C∗) were chosen using a grid search and five fold cross validation.

In addition to analyzing the performance, we also used the artificial data to show how

the uncertainty threshold is obtained both based on the F1 measure and Fisher’s score, and

to show the differences between computing the threshold on the geometric margin versus

the posterior probability. One example of computing the threshold on the twonorm data

set is presented in Fig. 4.6 and for the ringnorm data set in Fig. 4.7. For each measure

we compute all possible values across the entire training set, 4.6(c)-4.6(f) and 4.7(c)-4.7(f),

and select the maximum value as the uncertainty threshold. For the Fisher exact test we

used the negative logarithm of the p-value and hence the maximum is the most significant
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Figure 4.5: Class dependent distributions of each feature in the artificial data sets. Each feature is generated
from two normal distributions with the same standard deviation (σ) ((a) and (b)). We considered eleven
different distances between the means of the two distributions ranging from 0.5σ to 3σ. Two examples are
presented in (a) and (b) for the distance equal to σ and 3σ respectively. In (c) a different type of artificial data
set is considered, the ringnorm data set. In this case the standard deviations of the two normal distributions
are no longer identical, they are 1 and 2 respectively, and the distance between the means is 1/

√
d, where d

is the dimensionality of the data set (in our case equal to 2).
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enrichment. These maximums are marked with vertical blue lines. Based on this example,

there is no clear difference between using geometric margin (4.6(a) and 4.7(a)) and posterior

probabilities (4.6(b) and 4.7(b)) to select the uncertainty threshold. However, in both cases

the F1 score (dotted lines) selects a more stringent threshold in comparison to the Fisher’s

exact test (dashed lines). Another difference between using the F1 score and the Fisher’s

score for selecting the uncertainty threshold is the ability to set a significance threshold.

This significance threshold (horizontal brown line in 4.7(c), 4.7(e), 4.6(c) and 4.6(f)) can be

used to decide if uncertainty is needed or not. If the maximum Fisher’s score is bellow this

significance threshold using uncertainty is not warranted.

Using the twonorm data set we estimated the variance of the uncertainty threshold by

generating 50 random data sets for each distance between the means. For each iteration

we trained a model, computed the threshold and recorded the amount of data reported

as uncertain during training. We used this data to determine the confidence intervals of

the uncertainty threshold when using the Fisher’s score in Fig. 4.8(a) and the F1 score

in Fig. 4.8(b). Both F1 and Fisher’s score capture the general monotonically decreasing

uncertainty in the data sets with the increase in the distance between the means, with the

F1 measure being more conservative and rejecting fewer samples. In addition, there is no

clear difference between selecting the uncertainty threshold on the geometric margin or the

posterior probability. Since exact misclassification and rejection costs can rarely be defined

explicitly, going through the extra step of calibrating posterior probabilities is not justified

for selecting the uncertainty threshold. We applied the same procedure for the ringnorm

data set (Fig. 4.8) and the same conclusions can be drawn: the F1 score is more conservative

and there is no difference in selecting uncertainty threshold between the geometric margin

and posterior probability.

The goal of the SVM classification is to predict the class label as accurately as possible.

This implies the modeling of decision boundaries and not conditional probabilities. SVMs

achieve this by passing the conditional probabilities using the hinge loss, thus focusing on
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Figure 4.6: Side-by-side comparison of uncertainty region detection using geometric margin (a)(c)(d) and
posterior probability (b)(e)(f) on the twonorm artificial data set with the distance between the means equal
to 0.5σ, where σ is the standard deviation. The solid lines are the decision boundaries based on the geometric
margin (a) and the posterior probability (b) respectively, while the shades represent the confidence of the
discriminant function. The circles are the examples from the training set, with the bold circles representing
the ones misclassified during training. The uncertainty thresholds are chosen as the maximum values in the
trade-off graphs (c) and (e) for Fisher, and (d) and (f) for F1. These optimal thresholds (τ) are marked
with vertical blue lines in the trade-off graphs and with dashed (Fisher) and dotted (F1) lines in (a) and (b).
The trade-off graphs represent the range of all possible values of Fisher and F1 respectively over the entire
training set. By choosing the maximum on these graphs we optimize the uncertainty region to contain the
most misclassified samples and the fewest correctly classified samples at the same time.
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Figure 4.7: Side-by-side comparison of uncertainty region detection using geometric margin (a) and posterior
probability (b) on the ringnorm artificial data set which contains two gaussians with one mode completely
overlapping the other. The circles represent examples from the training set, while the bold circles represent
the misclassified samples during training. The solid lines are the decision boundaries based on geometric
margin (a) and posterior probability (b) respectively, and the shades represent the confidence of the dis-
criminant function. The dashed (Fisher) and dotted (F1) lines are the automatically chosen thresholds (τ)
for the uncertainty region. The thresholds are chosen as the maximum values in the trade-off graphs (c)
and (e) for Fisher, and in the graphs (d) and (f) for F1. These maximum values are marked with vertical
blue lines in the trade-off graphs. The trade-off graphs represent the range of all possible values of Fisher
and F1 respectively over the entire training set. By choosing the maximum on these graphs we optimize the
uncertainty region to contain the most misclassified samples and the fewest correctly classified samples at
the same time.
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τ

(a)

τ

(b)

Figure 4.8: Variance of the uncertainty threshold chosen based on Fisher’s exact test (a) and F1 test (b). The
variance is assessed on the ringnorm data set (left graph of (a) and (b)) and on the twonorm data set (right
side (a) and (b)) with distance between the means ranging from 0.5σ to 3σ. Both F1 and Fisher’s exact
test capture the monotonically decreasing amount of uncertainty with the increase of the distance between
the means. The F1 measure is slight more conservative and rejects fewer samples. In addition, there is no
difference in selecting the threshold on the geometric margin (red curve) or the posterior probability (blue
curve).
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predicting as accurately as possible near the decision boundary, while extreme points receive

less attention. Although calibration procedures try to correct this problem, it is at the

expense of further unwarranted computation. Since this region is where the most uncertainty

lies, the goal of USVM to quantify the confidence is more in line with the goal of classification

and the requirements of low complexity and sparsity than the goal of probabilistic prediction.

Essentially predicting accurate probabilities is a much harder problem than classification

itself, and sometimes it might not be worthwhile to predict the probabilities accurately in

the entire feature space. Our experiments suggest that calibration of SVM outputs leads

to comparable results near the decision boundary with further computational cost, which is

undesirable for a rejection option when costs are unknown.

4.6 Performance on benchmark data sets from the UCI

machine learning repository

We compared the performance of USVM with SVM on two data sets from the UCI

machine learning repository [7]. The first one is the Pima Indian diabetes data set (referred

to as pima), which is a binary classification task with eight features and 768 samples. The

second data set is the large scale high-dimensional mnist digit dataset [121]. It consists of

60,000 training and 10,000 testing samples of hand written digits. There are ten classes with

approximately equal number of instances in each class. Each instance is a 28×28 pixel image,

thus 784 features in total. All images are centered, and their scale and rotation normalized.

For all data sets we used the Gaussian kernel and choose the bandwidth γ, regularizer C and

the uncertainty threshold τ using cross-validation on the training set. The model for pima

is tested during cross-validation, while the model for mnist is tested on the independent test

set provided in the UCI machine learning repository.

On the pima data set, the uncertainty threshold is chosen such that the region of uncer-

tainty is highly error prone (40.37%) in comparison with the acceptance region (13.05%).
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SVM USVM
Uncertainty region

error rate percentage
discarded

D vs. H 22.66% 13.05% 40.37% 35.16%

Table 4.1: The error rate of the SVM prediction is reduced by approximately 44% when using the F1

automatic method to compute the uncertainty threshold on the pima data set. This is achieved by discarding
the points in the uncertain region which is characterized by a higher error rate.

In terms of overall performance, USVM reduces the error rate by approximately 44% over

the standard SVM. The cost of this performance increase is the percentage of samples that

where declared uncertain - 35% of the test set. These results are summarized in Table 4.1.

In addition, in Fig. 4.9, we present the evolution of the USVM accuracy (solid curve) and

uncertainty percentage (dashed line) for all the possible thresholds on the geometric margin.

Based on this figure, it can be noticed that the selection of the threshold is subjective and

based on prior knowledge of the data set it can be chosen more or less stringent. However,

USVM automatically selects the threshold that achieves the best odds ratio of errors in the

uncertainty region.

For the mnist data set, we decomposed it into binary classification problems. We per-

formed the comparison for each digit against the rest. For each one of the ten classifiers,

USVM reduces the error rate by approximately half by only declaring on average 2% of the

test data to be uncertain (Table 4.2). This is achieved by choosing the uncertainty region

such that it is highly error prone. For example, for the digit 8, 75% of the samples in the

uncertainty region are errors. We present in Fig. 4.10 a set of samples that where declared

uncertain by USVM. Each row represents one of the ten digit classifiers with the left side

containing false negatives and the right side false positives.

4.7 Results on clinical samples

A first such data set we analyzed involved gene expression profiles of leukemia patients.
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Figure 4.9: Evolution of the accuracy (solid curve) and uncertainty percentage (dashed curve) with the
increase in geometric margin. The vertical lines represent the standard geometric margin γ (brown) and
the optimal threshold chosen using the F1 score (blue). The standard SVM accuracy and uncertainty are
represented by the black points (77.30% and 0% respectively), while USVM accuracy and uncertainty by the
blue points (86.8% and 35% respectively).

SVM USVM
Uncertainty region

error rate percentage discarded
0 vs. ALL 0.81% 0.33% 59.26% 0.82%
1 vs. ALL 0.45% 0.12% 35.48% 0.93%
2 vs. ALL 1.66% 0.84% 57.75% 1.44%
3 vs. ALL 1.93% 0.82% 47.01% 2.39%
4 vs. ALL 1.69% 1.01% 55.28% 1.25%
5 vs. ALL 2.01% 0.93% 34.82% 3.19%
6 vs. ALL 1.01% 0.56% 60.81% 0.75%
7 vs. ALL 1.81% 0.78% 47.47% 2.21%
8 vs. ALL 3.18% 1.71% 75.65% 1.99%
9 vs. ALL 3.11% 1.71% 44.51% 3.29%

Table 4.2: For all the class specific models on the mnist data set the error rates of the SVM predictions
are approximately halved when using F1 automatic method to compute the uncertainty threshold. Note the
high percentage of errors discarded by using the uncertainty region.
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Figure 4.10: Sample of errors declared as uncertain by USVM on the mnist data set. Each row is the result
of the discrimination between digits 0 through 9 against all the remaining digits. The left side represent false
negatives (target digit samples that would have been missclassified without uncertainty) and the right side
are false positives (other digit samples that would have been missclassified without uncertainty). The empty
spaces are due to lack of more false negatives for classes 0 and 4.
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Armstrong et al. [4] showed that Acute Lymphoblastic Leukemias carrying a chromosomal

translocation involving the mixed-lineage leukemia gene (MLL, ALL1, HRX) have different

expression profiles from conventional acute lymphoblastic (ALL) and acute myelogenous

leukemias (AML). We use this data set to show that USVM can detect the novel MLL

subtype from the conventional ALL and AML.

The MLL data set contains gene expression profiles of three leukemia subtypes (ALL,

AML and MLL), each class containing (24, 28 and 20) samples respectively. The data from

all classes were normalized together using Robust Multiarray Average (RMA) [98] and gene

expression was obtained by averaging all the probesets associated to the same gene for all

8,655 genes covered by the microarray. Subsequently, the MLL class was set aside for testing

and both SVM and USVM were trained on samples contained in the ALL and AML groups.

The training was performed on 11 genes selected using the nearest shrunken centroid [181]

method only on the training data. After training the model using our USVM method we

evaluated it on the MLL test samples. Out of the 20 MLL test samples, 13 were found to

be dissimilar to the samples used for training and were classified as not belonging to either

ALL, nor AML. As expected the classical SVM missclassified all the MLL samples as either

ALL or AML. We show a graphical comparison between SVM and USVM using the first

three primary components obtained on the training set (Fig. 4.11). The red samples (ALL)

and blue samples (AML) are the training set, while the rest are all MLL testing samples

that were either misclassified as ALL (orange), or misclassified as AML (cyan), or rejected

in the case of USVM (gray). USVM is able to correctly classify 65% of the samples from the

new class as a never-seen-before subtype.

The second dataset is a cardiotocography dataset (CTG) that contains 2,126 fetal car-

diotocograms with 39 features [6, 7]. This dataset is particularly interesting for detecting

uncertain samples, since the fetal state, which is to be classified, is labeled as Normal, Patho-

logic and Suspect. In essence, the Suspect class includes those samples of which even the

human experts were uncertain of. Our premise was that by training only on the Normal
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Figure 4.11: Plot of the MLL data set using the first three primary components. The models for (a) SVM
and (b) USVM were trained on the AML (red) vs. ALL (blue) samples and tested against the MLL samples.
SVM fails to identify any of the MLL samples and misclassifies all of them as either AML (orange) or ALL
(cyan). USVM identifies 65% of the MLL samples (gray) as being different from both AML or ALL.

against Pathologic samples our method is able to identify during the prediction the Suspect

samples. In the cross-validation stage, the error rate was reduced by approximately 77%,

from 1.3% for the classical SVM to 0.3% for USVM. This happened because the uncertainty

region of the USVM captured a lot of the SVM errors (41.67% of the SVM prediction in this

area are errors). In turn, this led to a significant decrease of errors in the prediction areas.

Even though only a small percentage of samples are declared uncertain by USVM (1.91%),

this margin of uncertainty identifies 21.36% of the Suspect cases while SVM is unable to

identify any.

4.8 Summary

The widely used SVM classifiers essentially make guesses for those points of the input

space situated very close to the decision boundary (i.e., samples that are hard to classify).

In spite of the fact that these guesses are well-informed and shown to minimize the error in

lack of any additional information [192], these samples may in fact be an unforeseen division
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in the study population. A better characterization of the patients selected for a clinical trial

is one of the key ingredients to ensure its success [69]. To this extent we proposed a method

that automatically identifies samples that hard to classify between the two groups under

study and may result in the discovery of a new subgroup in the study population.
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Part II

Understanding the Disease

Mechanism Using Systems Biology

Chapter 5 Biological networks and available

analysis methods

Together with the ability of generating a large amount of data per experiment, high

throughput technologies also brought the challenge of translating such data into a better

understanding of the underlying biological phenomena. Independent of the platform and

the analysis methods used, the result of a high-throughput experiment is, in many cases, a

list of differentially expressed (DE) genes. The common challenge faced by all researchers is

to translate such lists of DE genes into a better understanding of the underlying biological

phenomena and in particular, to put this in the context of the whole organism as a complex

system. More precisly, we focus on the task of identifying the pathways, as defined in

Section 5.1, that are significantly impacted in a given experimental condition. This chapter

focuses on presenting alternative approaches currently available to tackle this problem. In a

recent review [114] the existing pathway analysis methods were grouped in three generations

based on the order they appeared and the new features they introduced. In the context of

this thesis a simpler division is more appropriate: i) gene set analysis methods (first and

second generation [114]) - Section 5.2 - and ii) methods that include topology information

(third generation [114]) - Section 5.3.
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5.1 Biological pathways and available resources

The purpose of this section is to introduce the biological concepts involved and to describe

the available resources for computational analysis. The genome (i.e., all the genes in an

organism) is considered to be the ”source-code” for all the processes that take place in a

cell and in the organism as a whole. Various technologies have been developed to measure

the level of gene expression. The process of gene expression represents the ”execution” phase

through which the code stored in the genes is used to produce proteins and enzymes that will

perform particular functions in the cell. It was later understood that the genes products do

not act independently, but come together to perform more complicated functions. How these

processes take place and what the interactions represent are described in pathways.

A pathway can be defined as a part of a larger system that has a clear set of properties: i)

it has a set of components (i.e., genes, proteins, metabolites, etc.); ii) it has a set of relations

between the components (i.e., gene signals, chemical reactions, etc.); iii) there are more

shared properties between the components of the pathway than the rest of the system; iv)

the components work together to accomplish a clearly defined task. Even though a generally

accepted definition of a pathway does not exist, the definition outlined here is general enough

to describe most available resources. Currently, there are three general classes of pathways

based on the components and the interactions between them: signaling pathways, metabolic

pathways and protein-protein interaction networks.

Signaling pathways use nodes to represent genes or gene products and edges to represent

the signals that are passed from one gene to another (e.g., activation, repression, etc.). As

an example, Fig. 5.1 shows the apoptosis signaling pathway, as constructed by KEGG, which

describes the genetically controlled mechanisms responsible for cell death. The different types

of interactions (signals) are represented by different edges (e.g., activation between FADD

and CASP10, inhibition between IAP and CASP6, etc.). A full diagram of all possible

interactions is displayed in Fig. 5.2. Even though the definition of a signaling pathway seems
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Figure 5.1: KEGG Apoptosis signaling pathway. Source: KEGG - http://www.genome.jp/kegg/pathway/
hsa/hsa04210.html.

Figure 5.2: The types of interactions in a KEGG signaling pathway. Source: KEGG - http://www.genome.
jp/kegg/document/help_pathway.html.

http://www.genome.jp/kegg/pathway/hsa/hsa04210.html
http://www.genome.jp/kegg/pathway/hsa/hsa04210.html
http://www.genome.jp/kegg/document/help_pathway.html
http://www.genome.jp/kegg/document/help_pathway.html
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Figure 5.3: Reactome apoptosis execution phase pathway. Source: Reactome - http://www.reactome.org/.

clear, there is still a large variation from one data provider to another. See Fig. 5.3 for the

same pathway as described by Reactome [102, 39].

Metabolic pathways use nodes to represent biochemical compounds as nodes and edges

to represent chemical reactions that produce, combine or transform these compounds. In

some cases these reactions are facilitated by catalysts, a role carried out by enzymes. As an

example, see Fig. 5.4 describes the metabolism of fatty acids. Notice the enzyme commis-

sion (EC) numbers on the edges which represent the gene products in the form of enzyme

that catalyze the reactions.

In a protein-protein interaction (PPI) network the nodes represent proteins, while

the edges represent physical interactions, such as binding, between two proteins. The main

problems with these networks, when it comes to pathway analysis as focused in this thesis,

is that they do not imply causality and they only represent a possible interaction between

two proteins. If the two proteins are not in the same cellular location at the same time, the

http://www.reactome.org/
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Figure 5.4: KEGG Fatty acid metabolism pathway. Source: KEGG - http://www.genome.jp/kegg/

pathway/hsa/hsa00071.html.

Figure 5.5: Yeast protein-protein PPI network. Source: [160].

http://www.genome.jp/kegg/pathway/hsa/hsa00071.html
http://www.genome.jp/kegg/pathway/hsa/hsa00071.html
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binding never happens. Fig. 5.5 shows an yeast PPI network. Examples of databases that

provide such PPI networks include: BioGRID [170, 29], STRING [65], etc.

Several pathway databases such as KEGG [137, 103, 104, 105], BioCarta [14], WikiPath-

ways [106], Pathway Commons [26], PANTHER Pathway [93], SMPDB [67] and Reactome

[102, 39], currently describe such signaling and metabolic pathways. Various methods, which

will be described in the next sections, were designed to take advantage of the rich information

available in these databases. In general, the term pathway analysis in this thesis is used for

analysis methods that compare two phenotypes and identify the pathways that are signif-

icantly impacted in the given condition. These methods receive as input the experimental

data and pathway database information and return a ranked list of impacted pathways.

5.2 Gene set analysis methods

The general characteristic of the methods in this group is that they consider the pathways

as simple set of genes and ignore the interactions between them. Most of the techniques that

are part of this group focus on the gene enrichment analysis in the pathway (viewed as a

gene set). These methods were first designed to deal with the Gene Ontology (GO) and

identify the enrichment of the genes annotated to specific GO terms. We reviewed over 20

tools available for computing enrichment using the gene ontology [110]. A more recent review

focused on the tools available for enrichment analysis reported over 68 tools available [94]

that were divided into three classes: i) singular enrichment analysis (SEA); ii) gene set

enrichment analysis (GSEA) and iii) modular enrichment analysis (MEA). This division is

a specific case of the generation division in [114] from the perspective of enrichment tools:

i) first generation or over representation analysis (ORA) or SEA; ii) second generation or

functional class scoring (FCS) or GSEA; iii) topology based methods or MEA.
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5.2.1 Over representation analysis

One of the first over representation analysis using the Gene Ontology (GO) was proposed

in 2002 [111, 50]. This functional profiling takes a list of DE genes and uses a statistical

analysis to identify the GO categories (e.g. biological processes, etc.) that are over- or under-

represented in the condition under study. Given a set of DE genes, this approach compares

the number of DE genes found in each category of interest with the number of genes expected

to be found in the given category just by chance. If the observed number is substantially

different from the one expected by chance, the category is reported as significant. A statistical

model (e.g. hypergeometric) can be used to calculate the probability of observing the actual

number of genes just by chance:

P (X = Kp|N,Np, K) =

(
Np

Kp

)
·
(
N −Np

K −Kp

)
(
N

K

) (5.1)

where: Kp and K are the number of number of DE genes that fall in the pathway and in

total, and Np and N are the number of reference genes that fall in the pathway and in total

respectively. The probability of having a value less than or equal to the observed value is

then:

Kp∑
i=0

(
Np

i

)
·
(
N −Np

K − i

)
(
N

K

) (5.2)

Therefore, the probability of having a value greater than or equal to the observed value

(the probability of observing Kp or more DE genes on this pathway) is the over representation
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p-value, which can be expressed as:

p = 1−
Kp∑
i=0

(
Np

i

)
·
(
N −Np

K − i

)
(
N

K

) (5.3)

By computing this p-value for each of the functional categories available and applying a family

wise error correction, the set of functional categories or pathways that are over represented

by the set of DE genes can be selected.

Currently, there are over 40 tools using this over-representation approach (ORA) [42, 212,

2, 11, 25, 12, 161, 125, 214, 91, 150, 208] using one or several statistical models like: hyper-

geometric, binomial, chi-square, etc. [50, 94]. In spite of its wide adoption, this approach

has a number of limitations related to the type, quality, and structure of the annotations

available [110].

5.2.2 Functional class scoring

An alternative approach considers the distribution of the pathway genes in the entire list

of genes and performs a functional class scoring (FCS) which also allows adjustments for

gene correlations [77, 143]. One of the most important differences between ORA and FCS

approaches is that ORA relies on a previous selection of a subset of differentially expressed

genes while FCS considers the entire list of genes (also known as cut-off free analysis).

The most popular method in the FCS category, the Gene Set Enrichment Analysis (GSEA)

[131, 172, 180], ranks all genes based on the correlation between their expression and the

given phenotypes (Fig. 5.6). A running score is computed by walking down the list of genes

ordered by expression change. The score is increased for every gene that belongs to the

gene set and decreased for every gene that does not. The enrichment score (ES) is the

maximum deviation from zero (Fig. 5.6) and corresponds to the a weighted Kolmogorov-

Smirnov statistic [172]. The enrichment score reflects the degree to which a given pathway
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Figure 5.6: Gene set enrichment analysis: i) rank the genes based on their correlation with the phenotype
(A); ii) calculate the enrichment score of the gene set by walking down the gene list and increasing the score
when the gene belongs to the set and decrease otherwise. Source: [172].

is represented at the extremes of the ranked list. Statistical significance for each gene set is

established with respect to a null distribution constructed by permutations. Another FCS

method is the Gene Set Analysis (GSA) method [58] that was proposed to improve on GSEA

by using the maxmean as the summary statistic. In addition, GSA uses re-standardizes the

gene set scores in order to take in consideration the distribution of all possible gene set scores.

Several methods using similar approaches were proposed [1, 99, 119, 96].

5.2.3 Non-independent gene sets

All the methods presented so far compute a score with a significance for each one of the

available pathways (as gene sets) and therefore considers them to be independent. Given that

the processes on all pathways take place at the same time, in the same cell, this assumption

is flawed. A few approaches presented recently try to address this problem. The general

characteristic of these methods is that they consider pathways to be non-independent and

incorporate this information in assessing the significance of each pathway.
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One approach is to apply a correction after computing the significance of each gene set. A

general method for correcting the cross-talk effects between pathways was exemplified using

an ORA approach [44, 45]. This method is analyzing the overlap between sets of genes in

each pathway and assesses based on the given phenotype the likelihood for a particular gene

to be involved in one pathway or another.

Another approach is the PADOG [175] method that considers the frequency of each gene in

the set of all pathways. The score for each gene set is a weighted mean of absolute moderated

t-scores of the genes belonging to the set. The weight for each gene is computed in such way

that the genes that appear in fewer pathways have a higher weight. In addition, it performs

a re-standardization as presented in [58]. This method belongs to the FCS category and it

was shown to perform better than GSEA or GSA [175].

5.3 Topology based analysis methods

The gene set analysis methods used for pathway analysis are limited by the fact that

each functional category is analyzed independently without a unifying analysis at a pathway

or system level [180]. These approaches are not well suited for a systems biology approach

that aims to account for system level dependencies and interactions, as well as identify

perturbations and modifications at the pathway or organism level [171].

Firstly, these approaches consider only the set of genes on a pathway and ignore their

positions in that pathway. This may be unsatisfactory from a biological point of view. If

a pathway is triggered by a single gene product or activated through a single receptor and

if that particular protein is not produced, the pathway will be greatly impacted. A good

example is the insulin pathway (Fig. 5.7). If the insulin receptor (INSR) is not present, the

entire pathway is shut off. Conversely, if several genes are involved in a pathway but they

only appear somewhere downstream, changes in their levels may not affect the given pathway

as much.
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Figure 5.7: KEGG Insulin Signaling Pathway. The insulin receptor (INSR in red) is the only entry point in
this pathway and big change in its expression will have a high effect on the entire pathway. Source: KEGG
- http://www.genome.jp/kegg/pathway/hsa/hsa04910.html.

Secondly, some genes have multiple functions and are involved in several pathways but

with different roles. For instance, the above INSR is also involved in the adherens junction

pathway as one of many tyrosine kinase receptors. However, if the expression of INSR

changes, this pathway is not likely to be heavily perturbed because INSR is just one of many

receptors on this pathway.

We addressed the limitations of classical approaches by proposing the very first method to

incorporate interaction knowledge into the analysis of signaling pathways [52]. The impact

analysis extended the classical analysis by incorporating important biological factors like (i)

the magnitude of expression change for each gene, (ii) their position on the pathway, as well

as (iii) the type of gene interactions on the pathway (the method is described in more detail in

Chapter 6). This was soon followed by a plethora of other methods [97, 52, 54, 55, 59, 60, 61,

71, 75, 76, 82, 95, 100, 127, 130, 150, 165, 166, 176, 193, 101, 205, 213]. The majority of them

use variations of centrality measures (e.g., node degree, node betweenness, etc.) to score genes

according to their position in the pathway and the number of neighboring genes. In addition,

http://www.genome.jp/kegg/pathway/hsa/hsa04910.html
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methods like ScorePAGE [150] and PWEA [95] also use gene expression similarity measures

(e.g., correlation coefficients) between genes on the same pathway to identify tight clusters

of highly correlated genes. Alternatively, methods like PARADIGM [193], PathOlogist [59],

TAPPA [71], BPA [100] consider the expression of genes (i.e., nodes) in the pathway as

random variables and use the interactions to define conditional dependency. Independent of

the model used to incorporate pathway topology, all these methods focus on identifying the

significantly impacted pathways in a given experimental condition.
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Chapter 6 The impact analysis

This chapter describes the first method that incorporates topology in the pathway analy-

sis, the impact analysis. This method is able to include in the analysis important biological

factors such as: i) type and position of each of the differentially expressed genes in the path-

way; ii) the magnitue of their expression change; and iii) the type of interaction between

all genes in the pathway. This method was proposed by our group [52] and my original

contribution are the algorithms to propagate the gene perturbation through the pathway.

My contribution also consisted in the development of a novel type of impact analysis able to

capture the individual gene significance. This is the first method ever proposed that is able

to take into consideration this type of information in establishing the significance of a given

pathway [195].

6.1 Impact factor

The goal of the impact analysis was to push the pathway analysis of high throughput data

beyond the currently ubiquitous approach that looks at a pathway as a mere set of genes.

We achieved this by adding new dimensions, able to capture the phenomena related to the

complex interactions and signaling described by the pathway topology. Here, we present

an analysis model that would require both a statistically significant number of differentially

expressed (DE) genes as well as biologically meaningful changes on a given pathway. In this

model, the impact factor (IF) of a pathway Pi is calculated as the sum of two terms:

IF (Pi) = log

(
1

pi

)
+

∑
g∈Pi
|PF (g)|

|∆E| ·Nde(Pi)
(6.1)

The first term is a probabilistic term that captures the significance of the given pathway

Pi from the perspective of the set of genes contained in it. This term captures the infor-
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mation provided by the currently used classical statistical approaches and can be calculated

using either an ORA (e.g., z-test [46], contingency tables [139, 142], etc.), a FCS approach

(e.g., GSEA [131, 172]) or other approaches [22, 155, 180]. The pi value corresponds to the

probability of obtaining a value of the statistic used at least as extreme as the one observed,

when the null hypothesis is true. The results presented here were obtained using the hyper-

geometric model [177, 50] in which pi is the probability of obtaining at least the observed

number of DE genes, Nde, just by chance.

The second term in Eq. 6.1 is a functional term that depends on the identities of the

specific genes that are differentially expressed as well as on the interactions described by

the pathway (i.e., its topology). In essence, this term sums up the absolute values of the

perturbation factors (PF) for all genes g on the given pathway Pi. The perturbation factor

of a gene g is calculated as follows:

PF (g) = ∆E(g) +
∑
u∈USg

βug ·
PF (u)

Nds(u)
(6.2)

In this expression, the first term captures the quantitative information measured in the

gene expression experiment. The factor ∆E(g) represents the signed normalized measured

expression change of the gene g determined using one of the available methods [32, 47, 149,

207]. The second term is a sum of all perturbation factors of the genes u directly upstream of

the target gene g, normalized by the number of downstream genes of each such gene Nds(u),

and weighted by a factor βug, which reflects the type of interaction: βug = 1 for induction,

βug = −1 for repression.1 USg is the set of all such genes upstream of g. The second term

here is similar to the PageRank used by Google [138] only that we weight the downstream

instead of the upstream connections (a web page is important if other pages point to it

whereas a gene is important if it influences other genes). If there are no measured differences

in the expression values of any of the genes upstream of g, PF (u) = 0 for all genes in USg,

1 In KEGG, which is the source of the pathways used here, this information about the type of interaction
is available for every link between two genes in the description of the pathway topology.
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and the second term becomes zero. In this case the perturbation factor reduces to:

PF (g) = ∆E (6.3)

This is exactly the classical approach, in which the amount of perturbation of an individual

gene in a given condition is measured through its expression change ∆E.

Under the null hypothesis, which assumes that the list of DE genes only contains random

genes, the likelihood that a pathway has a large impact factor is proportional to the number of

such“differentially expressed”genes that fall on the pathway, which in turn is proportional to

the pathway size. Thus, the second term in Eq. 6.1 is normalized with respect to the pathway

size by dividing the total perturbation by the number of DE genes on the given pathway,

Nde(Pi). Furthermore, various technologies can yield systematically different estimates of the

fold changes. For instance, the fold changes reported by microarrays tend to be compressed

with respect to those reported by RT-PCR [23, 49]. In order to make the impact factors

as independent as possible from the technology, and also comparable between problems, we

also divide the second term in Eq. 6.1 by the mean absolute fold change |∆E|, calculated

across all DE genes. Assuming that there are at least some DE genes anywhere in the data

set2, both |∆E| and Nde(Pi) are different from zero.

Our original implementation, as part of Pathway Express from the Onto-Tools suite 3,

used an iterative algorithm to determine the perturbation factor of each gene in the give

pathway. Fig. 6.1 illustrates the computation and propagation of the perturbations over two

steps in a small area of the actin cytoskeleton pathway as impacted in breast cancer (shown

in its entirety in Fig. 6.2). As already mentioned, in all data shown here the regulatory

efficiency is β = 1 for all genes. In this case, the gene DIAPH3 is the input gene with

an observed fold change ∆E = 1.4841. Since there are no genes upstream of DIAPH3, its

second term in Eq. 6.2 is zero. Using Eq. 6.2, the PF of gene DIAPH3 is simply its measured

2If there are no DE genes anywhere, the problem of finding the impact on various pathways is meaningless.
3The Onto-Tools suite is available at http://vortex.cs.wayne.edu

http://vortex.cs.wayne.edu
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expression change:

PF (DIAPH3) = 1.4841 + 0 = 1.4841 (6.4)

The next step involves the computation of the perturbation for BAIAP2. This gene receives

signals from DIAPH3 but also from RAC1, RAC1P4, RAC2 and RAC3. Using Eq. 6.2, the

PF for the gene BAIAP2 can be calculated as:

PF (BAIAP2) = ∆E(BAIAP2) +
PF (DIAPH3)

Nds(DIAPH3)
+
PF (RAC1)

Nds(RAC1)
+
PF (RAC1P4)

Nds(RAC1P4)

+
PF (RAC2)

Nds(RAC2)
+
PF (RAC3)

Nds(RAC3)

The previously calculated perturbations for RAC1, RAC1P4, RAC2 and RAC3 are:

PF (RAC1) = PF (RAC1P4) = PF (RAC2) = PF (RAC3) = −0.251 (6.5)

Each of these genes signals only to BAIAP2 so for each of them the number of downstream

genes, Nds will be equal to 1. Hence, the PF for the gene BAIAP2 can be calculated as:

PF (BAIAP2) = 1.4841 +
−0.251

1
+
−0.251

1
+
−0.251

1
+
−0.251

1
= 0.4801 (6.6)

Similarly, using Eq. 6.2, the PF for the gene DIAPH1 is

PF (DIAPH1) = ∆E(DIAPH1) +
PF (BAIAP2)

Nds(BAIAP2)
= 0 +

0.4801

3
= 0.16 (6.7)

The perturbation of the other two genes, LOC286404 and WASF2 is analogous and yields

the same numerical value.
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Figure 6.1: The computation of the PF for a gene and the subsequent propagation of the perturbation
according to Eq. 6.2. The genes are part of regulation of actin cytoskeleton pathway shown in Fig. 6.2. Some
of the interactions between the genes have been removed in order to simplify the figure. The labels next to
each gene indicate the PF. Source: Supplemtary materials of [52].

6.2 Significance of the impact factor

The impact factor, as computed in Eq. 6.1, is not a probability and is not suitable for

comparison between pathways. This section shows that the impact factor corresponds to

the negative log of the global probability of having both a statistically significant number of

differentially expressed genes and a large perturbation in the given pathway [52].

The first type of evidence that is used in the impact analysis is the probability that the

number of differentially expressed genes, X, is larger than or equal to the observed number

of differentially expressed genes, Nde just by chance:

pi = P (X ≥ Nde|H0) (6.8)

The second type of evidence is the impact of the topology, the gene interactions, and

gene fold changes that are captured in the second term of Eq. 6.1 thought the pathway

perturbation factor:

PF =

∑
g∈Pi
|PF (g)|

|∆E| ·Nde(Pi)
(6.9)

Let PF denote the perturbation factor as a random variable and pf be the observed value

for a particular pathway. The score pf is always positive, and the higher its value, the less

likely the null hypothesis (that the pathway is not significant). Moreover this likelihood de-
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Figure 6.2: Regulation of actin cytoskeleton as impacted in breast cancer [190]: the KEGG pathway diagram
(A) and its internal graph representation (B). Note that the unique symbol GF (blue) in the KEGG diagram
A, actually stands for 25 FGF genes in the internal graph B, only one of which is differentially expressed
(1). The colors show the propagation of the gene perturbations throughout the pathway. The differentially
expressed genes are FGF18 (1) and DIAPH3 (2). Changes from blue/green to yellow/red and viceversa
correspond to inhibitory interactions. For instance, since ROCK inhibits MBS, the negative perturbation of
ROCK propagates as a positive perturbation of MBS (3). Source: Supplementary materials of [52].
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cays very fast as pf gets away from zero. These features point to the exponential distribution

as an appropriate model for the random variable PF .

Under the null hypothesis, differentially expressed genes would fall on the pathway ran-

domly, and would not interact with each other in any concerted way. In other words, in

the second term in Eq. 6.2 (which captures the influence of the genes upstream) roughly

half of those influences will be positives, and half negative, canceling each other out. In

such circumstances, the perturbation of each gene would be limited to its own measured fold

change (due to random unrelated causes):

PF (g) = ∆E(g) +
∑
u∈USg

βug ·
PF (u)

Nds(u)
= ∆E(g) + 0 = ∆E(g) (6.10)

Consequently, under the same null hypothesis, the expected value for the perturbation of a

pathway (from Eq. 6.9) will be:

E(PF ) = E

(∑
g∈Pi
|PF (g)|

|∆E| ·Nde(Pi)

)
= E

(
1

|∆E|

∑Nde(Pi)
k=1 |∆E(g)|
Nde(Pi)

)
= E

(
|∆EPi

|
|∆E|

)
= 1 (6.11)

The last fraction above is the ratio between the mean fold change on the given pathway,

Pi, and the mean fold change in the entire data set. Under the null hypothesis, the genes

are distributed randomly across pathways and the two means should be equal. Since this

expected value is 1, the distribution of the random variable PF can be modeled by the

exponential of mean 1, exp(1).

If we use the PF score as a test statistics and assume its null distribution is exponential

with mean 1, then the p-value ppf resulting from the perturbation analysis will have the

form:

ppf = P (PF ≥ pf |H0) = e−pf (6.12)

This is the probability of observing a perturbation factor, PF , greater or equal to the one

observed, pf , when the null hypothesis is true.
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Let us now consider that for a given pathway we observe a perturbation factor equal to pf

and a number of differentially expressed genes equal to Nde. A ‘global’ probability pglobal, of

having just by chance both a higher than expected number of differentially expressed genes

AND a significant biological perturbation (large PF in the second term), can be defined as

the joint probability:

pglobal = P (X ≥ Nde, PF ≥ pf |H0) (6.13)

Since the pathway perturbation factor in Eq. (6.9) is calculated by dividing the total pathway

perturbation by the number of differentially expressed genes on the given pathway, the

PF will be independent of the number of differentially expressed genes X, and the joint

probability above becomes a product of two single probabilities:

pglobal = P (X ≥ Nde|H0) · P (PF ≥ pf |H0) (6.14)

This pglobal provides a global significance measure that requires both a statistically significant

number of differentially expressed genes on the pathway, Nde, and at the same time, large

perturbations on the same pathway as described by pf . Using equations (6.8) and (6.12),

the formula (6.14) becomes:

pglobal = pi · e−pf (6.15)

We take a natural log of both sides and obtain:

log (pglobal) = log (pi)− pf (6.16)

which can be re-written as:

− log (pglobal) = − log (pi) + pf (6.17)
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in which we can substitute the definition of pf from (6.9) above to yield:

− log (pglobal) = − log (pi) + PF (6.18)

The right hand side of this expression is exactly our definition of the impact factor:

IF = −log(pi) +

∑
g∈Pi
|PF (g)|

|∆E| ·Nde(Pi)
(6.19)

This shows that the proposed impact factor, IF, is in fact the negative log of the global

probability of having both a statistically significant number of differentially expressed genes

and a large perturbation in the given pathway.

Ignoring the discrete character of the hypergeometric distribution, under the null hypothe-

sis pi = P (X ≥ NRP |H0) has a uniform distribution. By taking negative log, the distribution

changes into exponential with parameter 1, similar to the distribution we assumed for PF,

the second term in IF formula.

− log(pi) ∼ exp(1); PF ∼ exp(1); exp(1) = Γ(1, 1) (6.20)

Then, as the sum of two independent exponential random terms, the IF will follow a Gamma

distribution Γ(2, 1) [87]. The pdf of this distribution is:

f(x) = xe−x, x ≥ 0 (6.21)

Finally, the p-value corresponding to the observed value if of the statistic IF can be

easily computed by integrating the density (6.21):

p = P (IF ≥ if |H0) =

∫ ∞
if

f(x)dx =

∫ ∞
if

xe−xdx = (if + 1) ∗ e−if (6.22)
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6.3 Performance analysis of the impact factor

We will illustrate this novel pathway analysis on several datasets. The first set includes

genes associated with better survival in lung adenocarcinoma [10]. These genes have the

potential to represent an important tool for the therapeutical decision and, if the correct

regulatory mechanisms are identified, they could also be potential drug targets. The expres-

sion values of the 97 genes associated with better survival identified by Beer et. al. were

compared between the cancer and healthy groups. These data were then analyzed using a

classical ORA approach (hypergeometric), a classical FCS approach (GSEA), and our impact

analysis. Fig. 6.3 shows a comparison between the results of these methods.

From a statistical perspective, the power of both classical techniques appears to be very

limited. The corrected p-values do not yield any pathways independently of the type of

correction. If the significance levels were to be ignored and the techniques used only to rank

the pathways, the results would still be unsatisfactory. According to ORA, the most signif-

icantly affected pathways in this data set are prion disease, focal adhesion and Parkinson’s

disease. In reality, both prion and Parkinson’s diseases are pathways specifically associated

to diseases of the central nervous system and are unlikely to be related to lung adenocarci-

nomas. In this case, prion disease ranks at the top only due to one gene, LAMB1. Since this

pathway is rather small (14 genes), every time any one gene is differentially expressed, the

hypergeometric analysis will rank it highly. A similar phenomenon happens on Parkinson’s

disease, indicating that this is a problem associated with the method rather than with a

specific pathway. At the same time, pathways highly relevant to cancer such as cell cycle

and Wnt signaling are ranked in the lower half of the list. The most significant pathways

reported as enriched in cancer by GSEA [172] are: cell cycle, Huntington disease, DRPLA,

Alzheimer’s and Parkinson’s (see Fig. 6.3). Among these, only cell cycle is relevant, while

Huntington’s, Alzheimer’s and Parkinson’s are clearly incorrect. However, although ranked

first, cell cycle is not significant in GSEA, even at the most lenient 10% significance and
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p-value FDR Bonferroni

Prion disease 0.149649 0.627132 1

Focal adhesion 0.155424 0.627132 1

Parkinson's disease 0.164842 0.627132 1

Dentatorubropallidoluysian atrophy 0.179767 0.627132 1

Calcium signaling pathway 0.262884 0.627132 1

Alzheimer's disease 0.277100 0.627132 1

Apoptosis 0.283744 0.627132 1

TGF-beta signaling pathway 0.303663 0.627132 1

Huntington's disease 0.327491 0.627132 1

Toll-like receptor signaling pathway 0.330069 0.627132 1

Wnt signaling pathway 0.369145 0.637613 1

Regulation of actin cytoskeleton 0.439390 0.695701 1

MAPK signaling pathway 0.560814 0.762988 1

Phosphatidylinositol signaling system 0.572396 0.762988 1

Adherens junction 0.602359 0.762988 1

Complement and coagulation cascades 0.680333 0.766820 1

Cell cycle 0.686102 0.766820 1

Cytokine-cytokine receptor interaction 0.820650 0.866242 1

Neuroactive ligand-receptor interaction 0.972996 0.972996 1

A

Pathway name
ORA (hypergeometric)

Enriched in cancer

Pathway Name NOM p-val FDR q-val FWER p-val

Cell cycle 0.038 0.118 0.140

Huntington's disease 0.074 0.217 0.546

Dentatorubropallidoluysian atrophy (DRPLA) 0.149 0.291 0.751

Alzheimer's disease 0.189 0.344 0.877

Parkinson's disease 0.373 0.485 0.984

Adherens junction 0.583 0.651 0.998

Wnt signaling pathway 0.861 0.785 1

Enriched in normal

Pathway Name NOM p-val FDR q-val FWER p-val

MAPK signaling pathway 0.007 0.170 0.361

Apoptosis 0.019 0.175 0.304

Complement and coagulation cascades 0.037 0.255 0.298

Phosphatidylinositol signaling system 0.189 0.343 0.823

Regulation of actin cytoskeleton 0.010 0.356 0.223

Focal adhesion 0.160 0.384 0.817

Cytokine-cytokine receptor interaction 0.241 0.420 0.910

Toll-like receptor signaling pathway 0.330 0.451 0.963

Calcium signaling pathway 0.308 0.489 0.960

Prion disease 0.474 0.563 0.986

TGF-beta signaling pathway 0.631 0.699 0.998

Neuroactive ligand-receptor interaction 0.947 0.957 1

B

IF p-value FDR Bonferroni

Cell cycle 19.26 8.76E-08 1.66E-06 1.66E-006

Focal adhesion 7.414 0.005072 0.048180 0.0956831

Wnt signaling pathway 6.780 0.008840 0.055988 0.1679642

Dentatorubropallidoluysian atrophy 5.535 0.025788 0.122495 0.4899810

Huntington's disease 4.543 0.058985 0.203925 1

Apoptosis 4.407 0.065921 0.203925 1

Regulation of actin cytoskeleton 4.246 0.075130 0.203925 1

TGF-beta signaling pathway 3.511 0.134730 0.319984 1

Complement and coagulation cascades 3.161 0.176357 0.354145 1

Adherens junction 2.953 0.206279 0.354145 1

Alzheimer's disease 2.752 0.239378 0.354145 1

Parkinson's disease 2.631 0.261455 0.354145 1

Toll-like receptor signaling pathway 2.576 0.272054 0.354145 1

Prion disease 2.572 0.272839 0.354145 1

Calcium signaling pathway 2.538 0.279588 0.354145 1

Cytokine-cytokine receptor interaction 2.353 0.318815 0.366952 1

Phosphatidylinositol signaling system 2.311 0.328326 0.366952 1

MAPK signaling pathway 2.205 0.353353 0.372984 1

Neuroactive ligand-receptor interaction 0.576 0.885936 0.885936 1

Pathway name
Impact Factor

C

Figure 6.3: A comparison between the results of the classical probabilistic approaches (A - hypergeometric,
B - GSEA) and the results of the pathway impact analysis (C) for a set of genes differentially expressed
in lung adenocarcinoma. The pathways marked with green are considered most likely to be linked to this
condition in this experiment. The ones in red are unlikely to be related. The ranking of the pathways
produced by the classical approaches is very misleading. According to the hypergeometric model, the most
significant pathways in this condition are: prion disease, focal adhesion, and Parkinson’s disease. Two out
of these 3 are likely to be incorrect. GSEA yields cell cycle as the most enriched pathway in cancer but
3 out of the 4 subsequent pathways are clearly incorrect. In contrast, all 3 top pathways identified by the
impact analysis are relevant to the given condition. The impact analysis is also superior from a statistical
perspective. According to both hypergeometric and GSEA, no pathway is significant at the usual 1% or 5%
levels on corrected p-values. In contrast, according to the impact analysis the cell cycle is significant at 1%,
and focal adhesion and Wnt signaling are significant at 5% and 10%, respectively. Source: [52].
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with the least conservative correction.

In contrast, the impact analysis reports cell cycle as the most perturbed pathway in

this condition and also as highly significant from a statistical perspective (p = 1.6 · 10−6).

Since early papers on lung cancers [168, 133], until the most recent ones [141, 35], there

is a consensus that the cell cycle is highly deranged in lung cancers. Moreover, cell cycle

genes have started to be considered both as potential prognostic factors and therapeutic

targets [194]. The second most significant pathway as reported by the impact analysis is

focal adhesion. An inspection of this pathway (Fig. 6.4) shows that in these data, both

ITG and RTK receptors are perturbed, as well as the EGF/GF ligand. Because these 3

genes appear at the very beginning and affect both entry points controlling this pathway,

their perturbations are widely propagated throughout the pathway. Furthermore, the CRK

oncogene was also found to be up-regulated. Increased levels of CRK proteins have been

observed in several human cancers and over-expression of CRK in epithelial cell cultures

promotes enhanced cell dispersal and invasion [156]. For this pathway, the impact analysis

yields a raw p-value of 0.005, which remains significant even after the FDR correction (p =

0.048), at the 5% level. In contrast, the hypergeometric model yields a raw p-value of

0.155 (FDR corrected to 0.627) while GSEA yields a raw p-value of 0.16 (FDR corrected

to 0.384). For both techniques, not even the raw p-values are significant at the usual levels

of 5% or 10%. This is not a mere accident but an illustration of the intrinsic limitations

of the classical approaches. These approaches completely ignore the position of the genes

on the given pathways, and therefore they are not able to identify this pathway as being

highly impacted in this condition. Note that any ORA approach will yield the same results

for this pathway for any set of 4 differentially expressed genes from the set of genes on

this pathways. Similarly, GSEA will yield the same results for any other set of 5 genes with

similar expression values (yielding similar correlations with the phenotype). Both techniques

are unable to distinguish between a situation in which these genes are upstream, potentially

commandeering the entire pathway as in this example, or randomly distributed throughout
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Figure 6.4: The focal adhesion in lung adenocarcinoma (left-KEGG diagram, right-internal representation).
Both ITG and RTK receptors are perturbed, as well as the VEGF/GF ligand. Since these 3 genes appear
at the very beginning and affect both entry points to this pathway, their perturbations are widely propa-
gated throughout (right), and this pathway appears as highly impacted. All classical approaches ignore the
positions of the genes, and fail to identify this pathway as significant.

the pathway.

The third pathway as ranked by the impact analysis is Wnt signaling (FDR corrected

p=0.055, significant at 10%). In fact, Mazieres et al. [128] recently identified 3 different

mechanisms for the activation of the Wnt signaling in lung cancers and argued that the

blockade of Wnt pathway may lead to new treatment strategies. In the same data set,

Huntington’s, Parkinson’s, prion and Alzheimer’s diseases have low impact factors (corrected

p-values of above 0.20), correctly indicating that they are unlikely to be relevant in lung

adenocarcinomas.

A second data set includes genes identified as being associated with poor prognosis in

breast cancer [190]. Fig. 6.5 shows a comparison between the classical hypergeometric ap-

proach, GSEA, and the pathway impact analysis. On this data, GSEA finds no significantly

impacted pathways at any of the usual 5% or 10% levels. In fact, the only FDR-corrected

value below 0.25, in the entire data set is 0.11, corresponding to the ubiquitin mediated pro-

teolysis. Furthermore, GSEA’s ranking does not appear to be useful for this data, with none

of the cancer-related pathways being ranked towards the top. The most significant signalling

pathway according to the hypergeometric analysis, cell cycle is also the most significant in
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the impact analysis. However, the agreement between the two approaches stops here. In

terms of statistical power, according to the classical hypergeometric model, there are no other

significant pathways at either 5% or 10% significance on the corrected p-values. If we were

to ignore the usual significance thresholds and only consider the ranking, the third highest

pathway according to the hypergeometric model is Parkinson’s disease. In fact, based on

current knowledge, Parkinson’s disease is unlikely to be related to rapid metastasis in breast

cancer. At the same time, the impact analysis finds several other pathways as significant.

For instance, focal adhesion is significant with an FDR-corrected p-value of 0.03. In fact, a

link between focal adhesion and breast cancer has been previously established [79, 188]. In

particular, FAK, a central gene on the focal adhesion pathway, has been found to contribute

to cellular adhesion and survival pathways in breast cancer cells which are not required for

survival in non-malignant breast epithelial cell [13]. Recently, it has also been shown that

Doxorubicin, an anti-cancer drug, caused the formation of well defined focal adhesions and

stress fibers in mammary adenocarcinoma MTLn3 cells early after treatment [187]. Conse-

quently, the FAK/PI-3 kinase/PKB signaling route within the focal adhesion pathway has

been recently proposed as the mechanism through which Doxorubicin triggers the onset of

apoptosis [187].

TGF-beta signaling (p=0.032) and MAPK (p=0.064) are also significant. Both fit well

with previous research results. TGF-beta1, the main ligand for the TGF-beta signaling path-

way, is known as a marker of invasiveness and metastatic capacity of breast cancer cells [183].

In fact, it has been suggested as the missing link in the interplay between estrogen receptors

and HER-2 (human epidermal growth factor receptor 2) [183]. Furthermore, plasma levels

of TGF-beta1 have been used to identify low-risk postmenopausal metastatic breast cancer

patients [136]. Finally, MAPK has been shown to be connected not only to cancer in general,

but to this particular type of cancer. For instance the proliferative response to progestin and

estrogen was shown to be inhibited in mammary cells microinjected with inhibitors of MAP

kinase pathway [30]. Also, it is worth noting the gap between the p-values for regulation
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of actin cytoskeleton (p=0.111), which may be relevant in cancer, and the next pathway,

Parkinson’s disease (p=0.239), which is irrelevant in this condition.

A third data set involves a set of differentially expressed genes obtained by studying the

response of a hepatic cell line when treated with palmitate [174]. Fig. 6.7 shows the compar-

ison between the classical statistical analysis (ORA) and the pathway impact analysis4. The

classical statistical analysis yields 3 pathways significant at the 5% level: complement and

coagulation cascades, focal adhesion and MAPK. The impact analysis agrees on all these, but

also identifies several additional pathways. The top 4 pathways identified by the impact anal-

ysis are well supported by the existing literature. There are several studies that support the

existence of a relationship between different coagulation factors, present in the complement

and coagulation cascades pathway, and palmitate. Sanders et al., for instance, demonstrated

that a high palmitate intake affects factor VII coagulant (FVIIc) activity [159]. Interestingly,

Fig. 6.6 shows not only that this pathway has a higher than expected proportion of differen-

tially expressed genes, but also that 6 out of 7 such genes are involved in the same region of

the pathway, suggesting a coherently propagated perturbation. The focal adhesion and tight

junction pathways involve cytoskeletal genes. Swagell et al. [174] considered the presence

of the cytoskeletal genes among the differentially expressed genes as very interesting and

hypothesized that the down-regulation of these cytoskeletal genes indicates that palmitate

decreases cell growth. Finally, the link between MAPK and the palmitate was established

by Susztak et al. who showed that p38 MAP kinase is a key player in the palmitate-induced

apoptosis [173].

4The GSEA analysis requires expression values for all genes. Since this experiment was performed with
a custom array and not all values are publicly available, GSEA could not be applied here.
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p-value FDR bonferroni

Cell cycle 3.1E-07 2.8E-06 2.765E-06

MAPK signaling pathway 0.02513 0.11309 0.2261834

Parkinson's disease 0.10752 0.32255 0.9676532

Cytokine-cytokine receptor interaction 0.24736 0.47992 1

Focal adhesion 0.29628 0.47992 1

Calcium signaling pathway 0.37158 0.47992 1

Regulation of actin cytoskeleton 0.40691 0.47992 1

TGF-beta signaling pathway 0.42660 0.47992 1

Neuroactive ligand-receptor interaction 0.58749 0.58749 1

A

Pathway name
ORA (hypergeometric)

Enriched in poor prognosis

Pathway Name NOM p-val FDR q-val FWER p-val

Ubiquitin mediated proteolysis 0.031 0.113 0.111

Prion disease 0.352 0.570 0.802

Alzheimer's disease 0.279 0.625 0.683

Tight junction 0.848 0.749 0.974

Parkinson's disease 0.638 0.795 0.958

Enriched in good prognosis

Pathway Name NOM p-val FDR q-val FWER p-val

Notch signaling pathway 0.082 0.277 0.636

Neuroactive ligand-receptor interaction 0.050 0.280 0.542

Adherens junction 0.136 0.400 0.829

Wnt signaling pathway 0.058 0.410 0.534

Circadian rhythm 0.078 0.582 0.960

Complement and coagulation cascades 0.232 0.638 0.997

Apoptosis 0.212 0.691 0.996

MAPK signaling pathway 0.046 0.693 0.479

Amyotrophic lateral sclerosis 0.244 0.738 0.993

Jak-STAT signaling pathway 0.913 0.952 1

Dentatorubropallidoluysian atrophy 0.792 0.987 1

Cytokine-cytokine receptor interaction 0.913 0.987 1

Calcium signaling pathway 0.522 1 1

Focal adhesion 0.556 1 1

Regulation of actin cytoskeleton 0.575 1 1

Phosphatidylinositol signaling system 0.735 1 1

TGF-beta signaling pathway 0.815 1 1

Cell cycle 0.859 1 1

Huntington's disease 0.885 1 1

B

IF p-value FDR Bonferroni

Cell cycle 18.8 1.3E-07 1.2E-06 1.19E-006

Focal adhesion 7.06 0.00692 0.03112 0.0622412

TGF-beta signaling pathway 6.56 0.01075 0.03225 0.0967557

MAPK signaling pathway 5.40 0.02886 0.06493 0.2597164

Regulation of actin cytoskeleton 4.49 0.06180 0.11125 0.5562285

Parkinson's disease 3.12 0.18207 0.23946 1

Cytokine-cytokine receptor interaction 3.09 0.18624 0.23946 1

Neuroactive ligand-receptor interaction 2.87 0.21942 0.24685 1

Calcium signaling pathway 2.44 0.30047 0.30047 1

Pathway name
Impact Factor

C

Figure 6.5: A comparison between the results of the classical (ORA) probabilistic approach (A), GSEA
(B) and the results of the pathway impact analysis (C) for a set of genes associated with poor prognosis
in breast cancer. The pathways marked with green are well supported by the existing literature. The ones
in red are unlikely to be related. After correcting for multiple comparisons, GSEA fails to identify any
pathway as significantly impacted in this condition at any of the usual significance levels (1%, 5% or 10%).
The hypergeometric model pinpoints cell cycle as the only significant pathway. Relevant pathways such as
focal adhesion, TGF-beta signaling, and MAPK do not appear as significant from a hypergeometric point of
view. While agreeing on the cell cycle, the impact analysis also identifies the 3 other relevant pathways as
significant at the 5% level. Source: [52].
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 Figure 6.6: The complement and coagulation cascade as affected by treatment with palmitate in a hepatic cell

line. There are 7 differentially expressed genes (up-regulated in red, down-regulated in blue) out of 69 total
genes. All classical ORA models would give any other pathway with the same proportion of genes a similar p-
value, disregarding the fact that 6 out of these 7 genes are involved in the same region of the pathway, closely
interacting with each other. Both ORA and GSEA would yield exactly the same significance value to this
pathway even if the diagram were to be completely re-designed by future discoveries. In contrast, the impact
factor can distinguish between this pathway and any other pathway with the same proportion of differentially
expressed gene, as well as take into account any future changes to the topology of the pathway. Source: [52].
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p-value FDR Bonferroni

Complement and coagulation cascades 1.26958E-07 2.28525E-06 2.28525E-06

Focal adhesion 4.03691E-05 0.000363322 0.000726643

MAPK signaling pathway 0.000523961 0.003143765 0.009431295

TGF-beta signaling pathway 0.011698758 0.052644412 0.210577648

Toll-like receptor signaling pathway 0.018714569 0.067372448 0.336862241

Calcium signaling pathway 0.024575814 0.072600598 0.442364654

Tight junction 0.028233566 0.072600598 0.508204185

Wnt signaling pathway 0.050174237 0.100857467 0.903136270

Phosphatidylinositol signaling system 0.058285692 0.100857467 1

Prion disease 0.060516063 0.100857467 1

Jak-STAT signaling pathway 0.061635119 0.100857467 1

Apoptosis 0.106427143 0.146873866 1

Cell cycle 0.106427143 0.146873866 1

Regulation of actin cytoskeleton 0.115415266 0.146873866 1

Alzheimer's disease 0.122394888 0.146873866 1

Huntington's disease 0.146968097 0.165339109 1

Neuroactive ligand-receptor interaction 0.233787848 0.247540075 1

Cytokine-cytokine receptor interaction 0.429908167 0.429908167 1

A

Pathway name
ORA (hypergeometric)

IF p-value FDR Bonferroni

Complement and coagulation cascades 19.374 7.85335E-08 1.41360E-06 1.44761E-06

Focal adhesion 13.791 1.51580E-05 1.36422E-04 3.01180E-04

MAPK signaling pathway 9.475 8.03922E-04 0.004823531 0.014470593

Tight junction 7.128 0.006521277 0.029345745 0.117382981

TGF-beta signaling pathway 6.868 0.008187095 0.029473543 0.147367717

Toll-like receptor signaling pathway 6.391 0.012391594 0.037174781 0.223048688

Calcium signaling pathway 5.774 0.021048873 0.052496861 0.378879719

Apoptosis 5.653 0.023331938 0.052496861 0.419974887

Regulation of actin cytoskeleton 5.225 0.033492741 0.066985482 0.602869334

Jak-STAT signaling pathway 4.983 0.041004319 0.073807774 0.738077735

Wnt signaling pathway 4.313 0.071158653 0.116441431 1

Phosphatidylinositol signaling system 3.975 0.093427025 0.133344438 1

Prion disease 3.937 0.096304316 0.133344438 1

Huntington's disease 3.839 0.104111596 0.133857767 1

Alzheimer's disease 3.387 0.148324272 0.171694058 1

Cell cycle 3.350 0.152616940 0.171694058 1

Neuroactive ligand-receptor interaction 2.414 0.305405348 0.323370368 1

Cytokine-cytokine receptor interaction 2.208 0.352624224 0.352624224 1

Pathway name
Impact Factor

B

Figure 6.7: A comparison between the results of the classical probabilistic approach (A) and the results of
the impact analysis (B) for a set of genes found to be differentially expressed in a hepatic cell line treated
with palmitate. Green pathways are well supported by literature evidence while red pathways are unlikely
to be relevant. The classical statistical analysis yields 3 pathways significant at the 5% level: complement
and coagulation cascades, focal adhesion and MAPK. The impact analysis agrees on these 3 pathways but
also identifies several additional pathways. Among these, tight junction is well supported by the literature.
Source: [52].
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6.4 System of equations and alternative significance

computation

As an additional effort in our group, it has been shown that the the set of all perturbations

defined by Eq. 6.2 form a system of linear equations [112]:



1− β11
Nds(g1)

− β21
Nds(g2)

· · · − βn1

Nds(gn)

− β12
Nds(g1)

1− β22
Nds(g2)

· · · − βn2

Nds(gn)

· · · · · · · · · · · ·

− β1n
Nds(g1)

− β2n
Nds(g2)

· · · 1− βnn

Nds(gn)





PF (g1)

PF (g2)

· · ·

PF (gn)


=



∆E(g1)

∆E(g2)

· · ·

∆E(gn)


This can also be written as:

(I−B) ·PF = ∆E (6.23)

where B represents the normalized weighted directed adjacency matrix of the graph describ-

ing the gene signaling network:

B =



β11
Nds(g1)

β12
Nds(g2)

· · · β1n
Nds(gn)

β21
Nds(g1)

β22
Nds(g2)

· · · β2n
Nds(gn)

· · · · · · · · · · · ·
βn1

Nds(g1)

βn2

Nds(g2)
· · · βnn

Nds(gn)


(6.24)

I is the identity matrix, and

∆E =



∆E(g1)

∆E(g2)

· · ·

∆E(gn)


(6.25)
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is the vector of measured expression changes for genes g1, g2, . . . , gn. With this notation, the

gene perturbation factors can be calculated as:

PF = (I−B)−1 ·∆E (6.26)

This system of equations can be solved exactly for most pathways [112].

This method was later implemented in the signaling pathway impact analysis (SPIA) R

package [176]. In addition, the method implemented in SPIA takes a different approach at

computing the significance of a given pathway. It computes a probability for each one of the

two types of evidence: i) the over-representation of DE genes in a given pathway and ii) the

abnormal perturbation of that pathway. The first probability, PNDE = P (X ≥ NDE|H0),

is usually computed using the hypergeometric distribution based on the assumption that

the number of differentially expressed genes that fall in the pathway follows such distribu-

tion. The second probability captures the perturbation propagation and is computed based

on the perturbation accumulation. The accumulation at the gene level is obtained from

Eq. 6.2:

Acc(gi) = PF (gi)−∆E(gi) (6.27)

This term represents the perturbation accumulation at each one of the gene and therefore

captures the information related to the topology of the pathway. The accumulation at the

pathway level is computed as:

tA =
∑
i

Acc(gi) (6.28)

The significance of this term is computed through a bootstrap technique and estimates the

probability PPERT = P (TA ≥ tA|H0). The two type of evidence, PNDE and PPERT , are

then combined into a global probability. Multiple methods to combine the two independent

evidences can be employed. In the original study the Fisher method [63] for combining

evidences was used:

PG = ci − ci · ln(ci) (6.29)
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where ci = PNDE(i) · PPERT (i).

6.5 Impact analysis that uses significance of individual

genes

The impact analysis model presented in the previous sections takes in consideration the

magnitude of expression change of each DE gene. Even though this has been proven to work

well, this approach is not able to consider the reliability of each individual gene measurement.

In all available analysis methods, including the classical impact analysis, once the set of DE

gene is selected, genes that are marginally significant are given the same importance as highly

significant genes. For instance, a gene that has a p-value of 2.84 ∗ 10−10, such as gene 2353

in Fig. 6.8(a), it is extremely clear that there is a huge expression change that is expected to

happen by chance only once in ten billion cases. In contrast, a gene with a p-value of 0.049,

such as gene 25966 in Fig. 6.8(a), is barely below the arbitrary threshold of 5%. To put things

in perspective, one can get the latter change about once in every 20 cases compared to once

in ten billion cases, as in the case of the other gene. All existing pathway analysis methods

will ignore this difference and treat these two genes in the same way, although clearly the

amount of trust that we can be put in these two measurements are very different.

In this particular case, the gene with the higher significance had a much higher fold

change, as well, so one could argue that gene 2353 would therefore still weight more in

the analysis. However, genes with the same measured fold change can still have widely

different significance values depending on the shape of their distributions (see Fig. 6.8(b)).

Another example are the genes 3725 and 84612 in Fig. 6.8(a). Even though the two genes

have similar absolute fold changes, 1.53 and −1.21 respectively, their significance is widely

different 1.15 ∗ 10−6 versus 0.0499. It is clear there is a need to take in consideration the

significance values alongside the measured expression changes for each gene.

We proposed a new method by adding a term αg in the Eq. 6.2 that is able to capture the
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(a) (b)

Figure 6.8: Shortcomings of analyses that ignore the p-value: (a) after the selection of differentially expressed
genes (the genes above the 5% significance threshold marked by the blue line) all selected genes are considered
to have the same importance. For instance, gene ID 2353 (marked with a red box) is given the same
importance as gene ID 25966 (marked with a red box) in the colorectal cancer dataset ID: GSE4701 from
GEO [56, 8]. (b) An example showing how two genes with the same fold change might have completely
different significance. Source: [195].
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information about the reliability of the measured expression change. This factor will weight

the expression change ∆E accordingly to its significance:

PF (g) = αg ·∆E(g) +
∑
u∈USg

βug ·
PF (u)

Nds(u)
(6.30)

The preliminary results presented here use the implementation of the impact analysis avail-

able as the SPIA R package [176]. Therefore, the p-value PPERT is computed on the pertur-

bation accumulation defined as:

Acc(gi) = PF (gi)− αg ·∆E(gi) (6.31)

We proposed two alternative expressions of the factor αg. The first alternative is the minus

log (MLG) ratio between the p-value and the significance threshold:

αg = − log
pg
αt

(6.32)

where, pg is the significance value for the measured expression change of the gene g, and αt is

the significance threshold used for the selection of differentially regulated genes. This modi-

fied formulation of the perturbation accumulation incorporates gene significance information

into the model and allows the genes detected with a very small p-value (highly significant

change) to contribute to the perturbation factor more than genes barely passing the thresh-

old. For instance, if the usual significance level αt = 0.01 is used and a gene is found to

be differentially expressed with a p-value pg = 0.0001, the corresponding perturbation will

be:

PF (g) = − log10

0.0001

0.01
·∆E(g) + ... = 2 ·∆E(g) + ... (6.33)

Conversely, changes detected very close to the detection threshold (pg ≈ αt) will be less
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Figure 6.9: Comparison of the two weighting schemas for the gene significance. Notice how the small p-values
are emphasized by the MLG model (red), while the 1MR model (blue) has a bounded range of values.

important:

PF (g) = − log10

0.00999

0.01
·∆E(g) + ... ≈ 0.0004 ·∆E(g) + ... (6.34)

Because this formula will actually emphasize very small p-values with the danger of going to

infinity when p-values are zero (some analysis packages can in fact produce p-values equal

to zero), we considered an alternative expression:

αg = 1− pg
αt

(6.35)

We will refer to this alternative model as one minus ratio or 1MR. A graphical comparison

between the two expressions is show in Fig. 6.9.

For those genes with a pg value close to zero (highly significant gene expression changes),

the second term pg/αt, will be close to zero, α will be close to 1, and the entire fold change ∆E

is taken into consideration, as before. For genes with a p-value very close to the significance

threshold used to select the genes, the term pg/αt will be close to 1 and α will be close to

zero, making their fold changes contribute less to the perturbation factor.

We evaluated the impact analysis with gene significance by comparing the two alternative
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SPIA SPIA MLG SPIA 1MR
Name pv adj.pv Name pv adj.pv Name pv adj.pv
ECM-receptor interaction 0.000005 0.00034 Colorectal cancer 0.004 0.181 ECM-receptor interaction 0.000005 0.00034
Focal adhesion 0.000005 0.00034 Dilated cardiomyopathy 0.004 0.181 Focal adhesion 0.000005 0.00034
Small cell lung cancer 0.002000 0.09067 Serotonergic synapse 0.004 0.181 Small cell lung cancer 0.001000 0.04533
Glutamatergic synapse 0.005000 0.17000 Bile secretion 0.006 0.181 Glutamatergic synapse 0.009000 0.22667
VEGF signaling pathway 0.010000 0.21371 Amphetamine addiction 0.007 0.181 Pathways in cancer 0.010000 0.22667
Pathways in cancer 0.011000 0.21371 Prion diseases 0.008 0.181 VEGF signaling pathway 0.010000 0.22667
Systemic lupus erythemato-
sus

0.011000 0.21371 Toll-like receptor signal-
ing pathway

0.013 0.253 Pathogenic Escherichia coli
infection

0.022000 0.42500

Pathogenic Escherichia coli
infection

0.023000 0.31733 Protein processing in endo-
plasmic reticulum

0.015 0.255 Systemic lupus erythemato-
sus

0.025000 0.42500

Chemokine signaling path-
way

0.023000 0.31733 Focal adhesion 0.023 0.348 Colorectal cancer 0.033000 0.48960

Cytokine-cytokine receptor
interaction

0.025000 0.31733 Cocaine addiction 0.033 0.420 Dilated cardiomyopathy 0.036000 0.48960

Colorectal cancer 0.027000 0.31733 Pathways in cancer 0.034 0.420 Type II diabetes mellitus 0.042000 0.51927
African trypanosomiasis 0.028000 0.31733 Systemic lupus erythemato-

sus
0.046 0.435 PPAR signaling pathway 0.063000 0.54400

Hepatitis C 0.043000 0.43714 VEGF signaling pathway 0.046 0.435 Serotonergic synapse 0.063000 0.54400
Staphylococcus aureus infec-
tion

0.045000 0.43714 ECM-receptor interaction 0.047 0.435 Staphylococcus aureus infec-
tion

0.068000 0.54400

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 6.1: Comparison of two models that incorporate gene significance (SPIA MLG and SPIA 1MR) with
the model without (SPIA). The Colorectal cancer pathway and Toll-like receptor signaling pathway are both
ranked better by SPIA MLG. More over, the PPAR signaling pathway is rank better by SPIA 1MR.

methods (SPIA MLG, using Eq. 6.32, and SPIA 1MR, using Eq. 6.35) with SPIA [176]

on a publicly available colorectal cancer dataset (GSE4701 [89]). In addition, we use the

framework proposed by Tarca et. al. [175] to compare the ranking of the signaling pathways

over a pool of 24 datasets.

6.5.1 Colorectal cancer case study

The dataset chosen for this case study consists of gene expression profiling, using the

Affymetrix HG-U133 Plus 2.0 microarray platform, of 12 early onset of colorectal cancer

samples versus 10 normal samples [89]. The data is available as part of the Gene Expression

Omnibus [56, 8] (ID: GSE4701). After normalizing the data set, we performed a moderated t-

test for each probe to compute the significance of the change between the two conditions and

selected for each gene the probe with the most significant change. The false discovery rate

(FDR) is used to control for multiple comparison error. For the models that require selection

of DE genes we use a 1% threshold on the FDR-adjusted p-value and a log fold change

threshold of 1.5. The comparison of the top ranked pathways is presented in Table 6.1.

Besides the Colorectal cancer pathway itself, several other pathways are know to be related

to colorectal cancer including: PPAR signaling pathway [167] and Toll-like receptor signaling

pathway [199, 68]. The SPIA MLG model ranks the both Colorectal cancer and the Toll-like
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receptor signaling pathways better than the original SPIA method.

6.5.2 Rank comparison over a pool of 24 datasets

The comparison framework proposed by Tarca et.al. [175] consists of 24 datasets from

multiple biological conditions including: Alzheimer’s disease, Parkinson’s disease, Huntig-

ton’s disease, colorectal cancer, renal cancer, pancreatic cancer, etc. For each dataset a

target pathway is defined that is most likely to be affected in the respective condition (e.g.,

colorectal cancer pathway is relevant to colorectal cancer). Given that all KEGG pathways

were constructed from literature search [103] and to maintain this method objective we made

sure that none of the 24 datasets were used in order to construct the KEGG pathways. For

each of the methods compared, the rank and p-value of the target pathway is recorded for

all datasets. We compare the methods based on the distribution of the ranks of the target

pathways. We only consider the datasets where at least 3 DE genes are found on the target

pathway. Given our threshold choice, only 14 out of the 24 datasets satisfy this require-

ment. The comparison of the rank distributions is presented in Fig. 6.10. Both in terms

of ranks and p-values the two models that incorporate gene significance (SPIA MLG and

SPIA 1MR) perform better than the method that does not incorporate it (SPIA), yielding

lower p-values for the target pathway, hence offering a more accurate insight on the biological

phenomenon.

6.6 Summary

This chapter contains the description and evolution of a pathway impact analysis that

includes information related to the topology of the pathway. This allows it to capture

important biological factors like: i) type and position of each of the differentially expressed

genes in the pathway; ii) the magnitude of their expression change; and iii) the type of

interaction between all genes in the pathway. In addition, a method to incorporate the
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Figure 6.10: Comparison using the list of DE genes: distribution of the rank and p-value of the target
pathway over 14 data sets. Both methods that incorporate gene significance rank the target pathways better
than SPIA and also assign them a more significant p-value. There is no clear difference in performance
between the two methods we proposed. Source: [195].
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significance of the expression change (p-value) of individual genes was presented.
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Chapter 7 Cut-off free impact analysis

With the recent advances in high-throughput technologies, such as RNA-Seq, we are able

to measure and quantify gene expression at unprecedented levels of quality and coverage. The

typical next-generation sequencing pipeline starts by sequencing the entire transcriptome, in

a true genome-wide effort. Many millions of short DNA sequences are obtained from the

entire transcriptome of a sample. This transcriptome is obtained from the entire genome

consisting of approximately 3 billion base pairs. These hundreds of millions of reads are

assembled and mapped on the entire genome in an immensely challenging computational

task. Eventually, an expression level is computed for each of the approximately 100,000

transcripts. Expression levels are then calculated for each gene and then a small subset

of differentially expressed (DE) genes are selected. Usually, the set of DE genes consists

of a few hundred genes. A typical size of 300 DE genes would represent only 1% of the

30,000 known genes. Most current pathway analysis techniques use only the DE genes and

throw away the remaining 99% of the gene expression values in spite of the huge laboratory

and computational effort that was used to quantify their values. Furthermore, the current

approach uses only 1% of the genes to allegedly infer “system-wide” conclusions about the

given phenotype. This extremely severe truncation of the information available is illustrated

in Fig. 7.1. There are literally many tens of thousand of genes whose expression changes

are completely ignored just because they do not meet an arbitrary threshold. It has been

already shown that the choice of threshold used to select the DE genes to be considered

further, can affect dramatically both the set of genes selected, as well as the final results of

the analysis [140]. The challenge here is to allow the pathway analysis stage to really use

“genome-wide” data, and while at the same time prevent the noise present in the entire data

set from overwhelming the analysis.

This chapter explores a new impact analysis method that is able to include all the mea-
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Figure 7.1: The selection of DE genes is a severe truncation of the information available. Source: Based on
figures from [84, 110].
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sured expression changes available in the experiment [195]. This method does allow the

pathway analysis to effectively use all measured gene expression changes, thus having the

potential to incorporate wide-spread or important changes that are below the usual signif-

icance thresholds. Another important benefit of this approach is that the results of the

pathway analysis stage become much more reproducible since the huge variability intro-

duced by the selection of DE genes is eliminated. This method was deployed as part of the

ROntoTools Bioconductor package (See Chapter 8).

7.1 Method

One characteristic of the impact analysis is that is based on an a priori selection of

differentially expressed (DE) genes. However, analyzing only the list of DE genes represents

an artificial truncation of the information available, as well as an unnecessary reliance on an

upstream gene selection method, which may be far from optimal [140]. Here we present a

method able to perform impact analysis using the entire set of gene expression values and

their significance without the need for a preliminary gene selection. We now define the weight

of the gene as follows:

ALL MLG : αg = − log
pg
pmax

and ALL 1MR : αg = 1− pg
pmax

(7.1)

In this new model pg is the p-value of a given gene g, while the pmax is the maximum p-value

(least significant) calculated across the entire set of genes. In many cases, this will be 1 or

close to it yielding:

ALL MLG : αg = − log pg and ALL 1MR : αg = 1− pg (7.2)

A graphical representation between the two models is presented in Fig. 7.2.

The entire set of expression values can now be considered, with the added benefit that
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Figure 7.2: Comparison of the two weighting schemas for the gene significance. Notice how the small p-values
are emphasized by the ALL MLG model (red), while the ALL 1MR model (blue) has a bounded range of
values.

highly significant genes will be automatically weighted more while less significant genes will

be weighted less.

The impact analysis with differentially expressed genes relies on two types of evidence,

one of which is the probability to observe a higher number of DE genes on the given pathway

just by chance. Since all the genes are now considered and therefore all the genes in the

pathway are expected to be measured, the over-representation p-value PNDE is not defined.

For this reason, the significance of a pathway is represented only by the probability of obtain

a higher perturbation than the one observed PPERT . This probability is computed using a

bootstrap approach.

7.2 Results and discussion

Similar to the evaluation with DE genes, we evaluated the utility of using a cut-off free

approach by comparing the two alternative methods (ALL MLG and SPIA 1MR, using

Eq. 7.1) with SPIA [176] on a publicly available colorectal cancer dataset (GSE4701 [89]).

Moreover, we use the framework proposed by Tarca et. al. [175] to compare the ranking of
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SPIA ALL MLG ALL 1MR
Name pv adj.pv Name pv adj.pv Name pv adj.pv
ECM-receptor interaction 0.000005 0.00034 Focal adhesion 0.002 0.174 Cytokine-cytokine receptor

interaction
5.0e-06 0.000171

Focal adhesion 0.000005 0.00034 Serotonergic synapse 0.004 0.174 Chemokine signaling path-
way

5.0e-06 0.000171

Small cell lung cancer 0.002000 0.09067 Colorectal cancer 0.005 0.174 Focal adhesion 5.0e-06 0.000171
Glutamatergic synapse 0.005000 0.17000 ECM-receptor interaction 0.006 0.174 ECM-receptor interaction 5.0e-06 0.000171
VEGF signaling pathway 0.010000 0.21371 Dilated cardiomyopathy 0.007 0.174 Staphylococcus aureus infec-

tion
1.0e-03 0.022833

Pathways in cancer 0.011000 0.21371 Prion diseases 0.010 0.174 Systemic lupus erythemato-
sus

1.0e-03 0.022833

Systemic lupus erythemato-
sus

0.011000 0.21371 Parkinson’s disease 0.011 0.174 Pathways in cancer 2.0e-03 0.034250

Pathogenic Escherichia coli
infection

0.023000 0.31733 Cocaine addiction 0.013 0.174 Small cell lung cancer 2.0e-03 0.034250

Chemokine signaling path-
way

0.023000 0.31733 PPAR signaling pathway 0.014 0.174 Pathogenic Escherichia coli
infection

5.0e-03 0.076111

Cytokine-cytokine receptor
interaction

0.025000 0.31733 Bile secretion 0.014 0.174 PPAR signaling pathway 9.0e-03 0.112091

Colorectal cancer 0.027000 0.31733 Pathways in cancer 0.014 0.174 Colorectal cancer 9.0e-03 0.112091
African trypanosomiasis 0.028000 0.31733 Systemic lupus erythemato-

sus
0.016 0.183 Hepatitis C 1.0e-02 0.114167

Hepatitis C 0.043000 0.43714 Renal cell carcinoma 0.018 0.190 Glutamatergic synapse 1.3e-02 0.137000
Staphylococcus aureus infec-
tion

0.045000 0.43714 Protein processing in endo-
plasmic reticulum

0.023 0.209 Sulfur relay system 1.6e-02 0.146133

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 7.1: Comparison of two cut-off free models (ALL MLG and ALL 1MR) with the model original model
(SPIA). The Colorectal cancer pathway and PPAR signaling pathway are both ranked better by ALL MLG.

the signaling pathways over a pool of 24 datasets.

Colorectal cancer case study

The dataset chosen for this case study consists of gene expression profiling, using the

Affymetrix HG-U133 Plus 2.0 microarray platform, of 12 early onset of colorectal cancer

samples versus 10 normal samples [89]. The data is available as part of the Gene Expression

Omnibus [56, 8] (ID: GSE4701). After normalizing the data set, we performed a moderated

t-test for each probe to compute the significance of the change between the two conditions

and selected for each gene the probe with the most significant change. The false discovery

rate (FDR) is used to control for multiple comparison error. The comparison of the top

ranked pathways when using a cut-off free analysis is presented in Table 7.1.

Using the cut-off free analysis, both the Colorectal cancer pathway and PPAR signaling

pathway which are known to be related to colorectal cancer, are ranked better than the

analysis with DE genes.

Rank comparison over a pool of 24 datasets

The comparison framework proposed by Tarca et.al. [175] consists of 24 datasets from

multiple biological conditions including: Alzheimer’s disease, Parkinson’s disease, Huntig-
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Figure 7.3: Comparison of cut-off free analysis: distribution of the rank and p-value of the target
pathway over 24 data sets. Both methods perform similar in terms of rank and p-value with the ALL MLG
model performing slightly better. Source: [195].

ton’s disease, colorectal cancer, renal cancer, pancreatic cancer, etc. For each dataset a

target pathway is defined that is most likely to be affected in the respective condition (e.g.,

colorectal cancer pathway is relevant to colorectal cancer). For each of the methods com-

pared, the rank and p-value of the target pathway is recorded for all datasets. We compare

the methods based on the distribution of the ranks of the target pathways. Fig. 7.3 shows

that ALL MLG model performs slightly better than ALL 1MR.

7.3 Multiple sclerosis case study

The goal of this section is to asses the ability of the cut-off free impact analysis to return

reproducible results independent of the experiment design and platform. To this extent we

searched the available public databases for experiments (data sets) that investigate the same

phenomenon or disease. The databases used were the Gene Expression Omnibus [56, 8] and

ArrayExpress [158]. For this analysis we search for experiments comparing normal versus

multiple sclerosis (MS) blood samples. The data sets we found are:
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KEGG id Pathway title
hsa05140 Leishmaniasis - Homo sapiens (human)
hsa04940 Type I diabetes mellitus - Homo sapiens (human)
hsa05330 Allograft rejection - Homo sapiens (human)
hsa05332 Graft-versus-host disease - Homo sapiens (human)
hsa05323 Rheumatoid arthritis - Homo sapiens (human)
hsa05320 Autoimmune thyroid disease - Homo sapiens (human)
hsa05310 Asthma - Homo sapiens (human)

Table 7.2: Significant pathways in common among the four datasets

• E-MTAB-358 [126]: Expression profiling of peripheral blood mononuclear cells (PBMCs)

in 19 MS patients and 14 controls.

• E-GEOD-21942 [107]: The experiment was conducted to perform a genome-wide ex-

pression study in peripheral blood mononuclear cells (PBMC) from 12 MS patients

and 15 controls in order to identify differentially expressed genes and pathways in MS.

• E-GEOD-17449 [74]: Two comparison where performed for women before pregnancy

(healthy vs MS) and at 9 months (healthy vs MS).

• E-MTAB-380 [129]: Expression profiling of peripheral blood mononuclear cells (PBMCs)

in 23 Relapsing-Remitting Multiple Sclerosis (RRMS) and 22 controls.

• E-GEOD-17048 [70] : Expression analysis of whole blood cells in 99 MS (43 Primary

progressive MS, 36 RRMS, 20 Secondary Progressive MS), and 45 healthy controls.

In order to remove the variability we excluded the experiment that only analyzed data

coming from pregnant women (E-GEOD-17449). We independently performed the cut-off

free impact analysis on all the remaining data sets. Using a 10% significance threshold, we

identified seven pathways that are significant in all data sets (see Fig. 7.4). These pathways

are presented in Table 7.2. All these pathways are associated in one way or another to the

immune response, which is to be expected as is well known that multiple sclerosis is an

autoimmune disease that affects the brain and spinal cord (central nervous system). Based

on this observation we tested if there is any common module among these pathways that

would be associated to multiple sclerosis.

http://www.genome.jp/kegg-bin/show_pathway?hsa05140
http://www.genome.jp/kegg-bin/show_pathway?hsa04940
http://www.genome.jp/kegg-bin/show_pathway?hsa05330
http://www.genome.jp/kegg-bin/show_pathway?hsa05332
http://www.genome.jp/kegg-bin/show_pathway?hsa05323
http://www.genome.jp/kegg-bin/show_pathway?hsa05320
http://www.genome.jp/kegg-bin/show_pathway?hsa05310
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Figure 7.4: Overlap of significant pathways over the four MS data sets. A group of seven pathways are
identified as significant over all four data sets. These pathways are all associated with the immune response
which is a good confirmation as multiple sclerosis is an autoimmune disease.

Independent of any dataset, we selected the set of genes that are in common among all

the seven pathways and considered it as a separate pathway. In addition, we removed this

module from any pathway that contains all the genes in the module. Using the updated

set of pathways we then re-analyzed all the datasets. The only pathway that was found

significant in all datasets was the new module (see Fig. 7.5). Also, the module was found to be

significant even in the dataset that was originally discarded (E-GEOD-17049). This module

is composed by genes belonging to the Major Histocompatibility Complex II (MHCII), found

to be strongly associated with autoimmune diseases [202].

7.4 Summary

This chapter described an impact analysis method that is not influenced by the threshold

used to select differentially expressed genes. This approach is able to consider all mea-

sured gene expressing changes, thus eliminating the possibility that small but important

gene changes (e.g. transcription factors) are omitted from the analysis. Furthermore, this

approach provides consistent results that do not depend on the choice of an arbitrary thresh-
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Figure 7.5: Overlap of significant pathways over four MS data sets after module extraction. The module
found to be in common among the seven significant pathways in all four data sets has been extracted from all
pathways and considered as a different module. After performing the cut-off free analysis over the updated
set of pathways, only the new module was found to be significant in all four data sets.

old for the differential regulation. It is also shown that this approach is able to obtain

consistent results across multiple experiments performed by different groups on different

technologies.
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Chapter 8 ROntoTools User Guide

This chapter contains the user guide for the Pathway-Express (pe) tool for the analysis

of signaling pathways. This tool was released in the ROntoTools package1 as part of Bio-

conductor 2.12 [73] and it was well received with downloads from more than 100 unique IP’s

per month (Fig. 8.1). The analyses implemented in this package include the impact analysis

with differentially expressed genes [52, 176], the incorporation of gene significance [195] and

the elimination of the need to select differentially expressed genes [195]. The impact analysis

requires to sources of data, one is the pathway database and the other is the experimental

data that we wish to analyze. The following sections describe how to prepare the set of

pathways, how to set the gene significance, the format of the experimental data and how to

visualize the results.

8.1 Pathway database

Pathway-Express is a general tool that accepts any set of signaling pathways defined

using the standard implementation provided in the graph package. The only requirement is

that each pathway, defined as an object of type graph, has a weight defined for each edge,

representing the efficiency of the propagation between the two genes, and a weight for each

node, that will capture the type of gene or the significance of the measured expression change.

This package provides tools to access the KEGG database for signaling pathways and also

tools to set these weights.

For example, to download and parse the signaling pathways available in KEGG use:

> require(graph)

> require(ROntoTools)

> kpg <- keggPathwayGraphs("hsa", verbose = FALSE)

1http://bioconductor.org/packages/2.12/bioc/html/ROntoTools.html

http://bioconductor.org/packages/2.12/bioc/html/ROntoTools.html
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Figure 8.1: ROntoTools download stats as obtained from the official Bioconductor website: http://

bioconductor.org/packages/stats/bioc/ROntoTools.html.

http://bioconductor.org/packages/stats/bioc/ROntoTools.html
http://bioconductor.org/packages/stats/bioc/ROntoTools.html
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The above code will load the available cached data for human (i.e., KEGG id hsa). To

update the cache and download the latest KEGG pathways available use the updateCache

parameter:

> kpg <- keggPathwayGraphs("hsa", updateCache = TRUE, verbose = TRUE)

This command is time consuming and depends on the available bandwith.

The kpg is a list of graph objectes:

> head(names(kpg))

[1] "path:hsa03008" "path:hsa03013" "path:hsa03015" "path:hsa03018"

[5] "path:hsa03320" "path:hsa03460"

To inspect one of the pathway graphs, only the ID is required. Here is an example for the

Cell Cycle:

> kpg[["path:hsa04110"]]

A graphNEL graph with directed edges

Number of Nodes = 124

Number of Edges = 630

> head(nodes(kpg[["path:hsa04110"]]))

[1] "hsa:1029" "hsa:51343" "hsa:4171" "hsa:4172" "hsa:4173" "hsa:4174"

> head(edges(kpg[["path:hsa04110"]]))

$`hsa:1029`

[1] "hsa:4193" "hsa:1019" "hsa:1021" "hsa:595" "hsa:894" "hsa:896"

$`hsa:51343`

[1] "hsa:983" "hsa:85417" "hsa:891" "hsa:9133"

$`hsa:4171`

character(0)
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$`hsa:4172`

character(0)

$`hsa:4173`

character(0)

$`hsa:4174`

character(0)

In addition the parser extracted the type of interaction for each gene-gene interaction in

an attribute called subtype:

> head(edgeData(kpg[["path:hsa04110"]], attr = "subtype"))

$`hsa:1029|hsa:4193`

[1] "inhibition"

$`hsa:1029|hsa:1019`

[1] "inhibition"

$`hsa:1029|hsa:1021`

[1] "inhibition"

$`hsa:1029|hsa:595`

[1] "inhibition"

$`hsa:1029|hsa:894`

[1] "inhibition"

$`hsa:1029|hsa:896`
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[1] "inhibition"

Using this attribute the function setEdgeWeights sets the same weight for all the inter-

actions of the same type:

> kpg <- setEdgeWeights(kpg, edgeTypeAttr = "subtype",

+ edgeWeightByType = list(activation = 1, inhibition = -1,

+ expression = 1, repression = -1),

+ defaultWeight = 0)

At this point, kpg contains a list of graphs with weighted edges:

> head(edgeData(kpg[["path:hsa04110"]], attr = "weight"))

$`hsa:1029|hsa:4193`

[1] -1

$`hsa:1029|hsa:1019`

[1] -1

$`hsa:1029|hsa:1021`

[1] -1

$`hsa:1029|hsa:595`

[1] -1

$`hsa:1029|hsa:894`

[1] -1

$`hsa:1029|hsa:896`

[1] -1

To retrieve the title of the pathways and not just their ids the function keggPathwayNames
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can be used:

> kpn <- keggPathwayNames("hsa")

> head(kpn)

path:hsa03008 path:hsa03013

"Ribosome biogenesis in eukaryotes" "RNA transport"

path:hsa03015 path:hsa03018

"mRNA surveillance pathway" "RNA degradation"

path:hsa03320 path:hsa03460

"PPAR signaling pathway" "Fanconi anemia pathway"

8.2 Experiment data

As an example, the package includes a pre-processed data set from ArrayExpress (E-

GEOD-21942) that studies the expression change in peripheral blood mononuclear cells

(PBMC) between 12 MS patients and 15 controls. The data was preprocessed using the

limma package [24]. Only probe sets with a gene associated to them have been kept and for

each gene only the most significant probe set has been selected (the table is already ordered

by p-value):

> load(system.file("extdata/E-GEOD-21942.topTable.RData",

+ package = "ROntoTools"))

> head(top)

logFC P.Value adj.P.Val entrez

200946_x_at -1.0175141 5.833411e-13 4.172652e-09 hsa:2746

228697_at -3.6479368 7.985427e-13 4.172652e-09 hsa:135114

210254_at 3.2807123 3.086572e-12 9.677020e-09 hsa:932

234726_s_at -0.9792301 7.368175e-12 1.760593e-08 hsa:64418

215905_s_at -1.7733135 7.861797e-12 1.760593e-08 hsa:9410

http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-21942/
http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-21942/
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235542_at -0.9447467 1.617944e-11 2.536288e-08 hsa:200424

Select differentially expressed genes at 1% and save their fold change in a vector fc and

their p-values in a vector pv:

> fc <- top$logFC[top$adj.P.Val <= .01]

> names(fc) <- top$entrez[top$adj.P.Val <= .01]

> pv <- top$P.Value[top$adj.P.Val <= .01]

> names(pv) <- top$entrez[top$adj.P.Val <= .01]

> head(fc)

hsa:2746 hsa:135114 hsa:932 hsa:64418 hsa:9410 hsa:200424

-1.0175141 -3.6479368 3.2807123 -0.9792301 -1.7733135 -0.9447467

> head(pv)

hsa:2746 hsa:135114 hsa:932 hsa:64418 hsa:9410 hsa:200424

5.833411e-13 7.985427e-13 3.086572e-12 7.368175e-12 7.861797e-12 1.617944e-11

Alternatively, an analysis with all genes can be performed:

> fcAll <- top$logFC

> names(fcAll) <- top$entrez

> pvAll <- top$P.Value

> names(pvAll) <- top$entrez

The reference contains all the genes measured in the analysis:

> ref <- top$entrez

> head(ref)

[1] "hsa:2746" "hsa:135114" "hsa:932" "hsa:64418" "hsa:9410"

[6] "hsa:200424"
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8.3 Setting the node weights

The node weights are used to encode for the significance of each gene, the term described

as α in [195]. The two alternative formulas to incorporate the gene significance:

α = 1− p/pthr and α = −log(p/pthr) (8.1)

are implemented as two function alpha1MR and alphaMLG.

To set the node weights the function setNodeWeights is used:

> kpg <- setNodeWeights(kpg, weights = alphaMLG(pv), defaultWeight = 1)

> head(nodeWeights(kpg[["path:hsa04110"]]))

hsa:1029 hsa:51343 hsa:4171 hsa:4172 hsa:4173 hsa:4174

1.0000000 1.0000000 0.8120949 1.0000000 1.0000000 1.0000000

8.4 Pathway analysis and results summary

Up to this point all the pieces need for the analysis have been assembled:

• the pathway database with the experiment specific gene significance - kpg

• the experiment data - fc and ref

To perform the analysis the function pe is used (increase the parameter nboot to obtain

more accurate results):

> peRes <- pe(x = fc, graphs = kpg, ref = ref, nboot = 200,

+ verbose = FALSE)

The result object can be summarized in a table format with the desired columns using

the function Summary:

> head(Summary(peRes))

totalAcc totalPert totalAccNorm totalPertNorm pPert

path:hsa05010 21.5034630 128.32957 0.6904808 2.616553 0.029850746
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path:hsa05110 22.8375919 87.30055 4.7628726 5.958016 0.004975124

path:hsa04142 0.2232419 90.73185 0.1145369 5.086767 0.004975124

path:hsa04145 0.0000000 102.93799 NA 6.198880 0.004975124

path:hsa05152 140.0243475 237.47577 5.5160343 6.589622 0.004975124

path:hsa04722 56.2219227 114.29999 2.0457742 3.099216 0.004975124

pAcc pORA pComb pPert.fdr pAcc.fdr

path:hsa05010 0.422885572 8.544061e-06 4.127118e-06 0.04231271 0.58883799

path:hsa05110 0.004975124 1.085083e-04 8.330837e-06 0.01452736 0.04067896

path:hsa04142 0.915422886 2.047498e-04 1.507308e-05 0.01452736 0.96916875

path:hsa04145 NA 2.424942e-04 1.764759e-05 0.01452736 NA

path:hsa05152 0.009950249 5.666823e-04 3.884739e-05 0.01452736 0.05762852

path:hsa04722 0.039800995 9.960632e-04 6.548746e-05 0.01452736 0.10245071

pORA.fdr pComb.fdr

path:hsa05010 0.001264521 0.0006025592

path:hsa05110 0.008029611 0.0006081511

path:hsa04142 0.008972285 0.0006441370

path:hsa04145 0.008972285 0.0006441370

path:hsa05152 0.012677874 0.0011343437

path:hsa04722 0.016379706 0.0015935283

> head(Summary(peRes, pathNames = kpn, totalAcc = FALSE, totalPert = FALSE,

+ pAcc = FALSE, pORA = FALSE, comb.pv = NULL, order.by = "pPert"))

pathNames pPert pPert.fdr

path:hsa03013 RNA transport 0.004975124 0.01452736

path:hsa04020 Calcium signaling pathway 0.004975124 0.01452736

path:hsa04060 Cytokine-cytokine receptor interaction 0.004975124 0.01452736

path:hsa04062 Chemokine signaling pathway 0.004975124 0.01452736

path:hsa04066 HIF-1 signaling pathway 0.004975124 0.01452736
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path:hsa04110 Cell cycle 0.004975124 0.01452736

8.5 Graphical representation of results

To visualize the summary of the Pathway-Express results use the function plot (see

Fig. 8.2):

> plot(peRes)

> plot(peRes, c("pAcc", "pORA"), comb.pv.func = compute.normalInv,

+ threshold = .01)

Pathway level statistics can also be displayed one at a time using the function plot (see

Fig. 8.3):

> plot(peRes@pathways[["path:hsa05216"]], type = "two.way")

> plot(peRes@pathways[["path:hsa05216"]], type = "boot")

To visualize the propagation across the pathway, two functions - peNodeRenderInfo and

peEdgeRenderInfo - are provided to extract the required information from a pePathway

object:

> p <- peRes@pathways[["path:hsa05216"]]

> g <- layoutGraph(p@map, layoutType = "dot")

> graphRenderInfo(g) <- list(fixedsize = FALSE)

> edgeRenderInfo(g) <- peEdgeRenderInfo(p)

> nodeRenderInfo(g) <- peNodeRenderInfo(p)

> renderGraph(g)

This is the Thyroid cancer signaling pathway and is shown in Fig. 8.4. Another example

is the T cell receptor signaling pathway and is presented in Fig. 8.5. These pathways can

also be visualized with other tool, like the pathview [124].
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Figure 8.2: Two-way plot of Pathway-Express result
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Figure 8.3: Pathway level statistiscs: perturbation accumulation versus the measured expression change
(above) and the bootstrap simulations of the perturbation accumulation (below).
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Figure 8.4: Perturbation propagation on the Thyroid cancer signaling pathway. The input genes are marked
with squares, while all the other genes are circles. The color of the genes represent either a positive (red)
or negative (blue) perturbation, while the intensity represents the magnitude of the respective perturbation.
The interactions marked with arrows represent activation-like signals and have a positive weight. The dotted
interactions have zero weight and no perturbation will be propagated through these edges. Notice how the
propagation flows throughout the pathway from the input genes through the non-zero weight edges.
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Figure 8.5: Perturbation propagation on the T cell receptor signaling pathway. The input genes are marked
with squares, while all the other genes are circles. The color of the genes represent either a positive (red)
or negative (blue) perturbation, while the intensity represents the magnitude of the respective perturbation.
The interactions marked with arrows represent activation-like signals and have a positive weight, while the
dashed arrows represent inhibition-like events and have a negative weight. The dotted interactions have
zero weight and no perturbation will be propagated through these edges. Notice how the propagation flows
throughout the pathway from the input genes through the non-zero weight edges.
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8.6 Future work

This package is indented to be the R implementation of the web-based data mining and

analysis suite of tools called Onto-Tools [111, 50, 48, 51, 108, 48, 113, 109, 53, 108, 109,

43, 109, 115, 52, 112]. Among these, Onto-Express (OE) was the first publicly available

tool for the GO profiling of high throughput data and Pathway-Express (PE) the first tool

to perform analysis of signaling pathways using important biological factors like all the

interactions between the genes, the type of interaction between them and the position and

magnitude of expression change for all the differentially expressed genes. The online tools

have over 10,000 registered users from 53 countries. Approximately, 5,000 of these are regular

users (more than 10 data sets processed). This R package will provide these users with access

to the direct functionalities of the online version and to new analysis methods.
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Chapter 9 Estimating Gene Contributions

in Signaling Pathways

In this chapter we are addressing a problem that is affecting all available pathway analysis

methods. All methods rely on the quality of the available pathways. These pathways were

designed to describe the general mechanism of a particular disease or biological process.

The known pathways encompass the results of many biological experiments and even though

they represent our current understanding of those particular biological processes, they are

still generally considered sketchy and incomplete. One piece of information that is generally

missing regards the role or importance of a gene in a given pathway which we refer to as

the gene contribution. We describe a method, based on genetic algorithms, to objectively

quantify the contribution of each gene. This method was proposed in [196].

9.1 Genetic algorithms

Genetic algorithms (GA) are search methods based on natural concepts such as natural

selection, evolution and genetics. In its basic form, a GA involves the evolution of a fixed size

population across generations, where each individual of the population represents a possible

solution in the search space. Each individual is represented by a set of genes, and each gene

is represented in a way that depends on the implementation of the GA (e.g. binary string

or floating point). The evolution of the population results in one or more of the individuals

satisfying a certain criterion of the search, for example a local maximum or minimum. The

evolution is led by a few key events: selection, crossover, and mutation. Selection is the

process of elimination of the individuals that do not pass a fit-test. Several methods exist for

selection, but the basic idea is to give preference to the better individuals. The key element

in the selection is the way of determining which individual is better. For this purpose,
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an evaluation can come from an objective function that gives each individual a score that

can serve, for example, for ranking the population. Crossover is the event in which two

individuals A and B are chosen to be mated. The two sets of genes belonging to the two

individuals are parted in the same way, and then two new individuals are constructed taking

one of the partitions of A and one the partitions of B. Mutation, like crossover, is a way to

explore different structures. This event represents a single, usually low-probability, random

change in a gene. Selection, crossover, and mutation are applied across generations, and the

average evaluation of the population increases. A stopping criterion is then applied (e.g.

limit to the number of generations, threshold on the result of the evaluation function for

the best individuals), and the best individuals are chosen as solutions. The use of GAs in

bioinformatics is widespread, from applications in sequence alignment [80] to RNA structure

prediction [186]. This technique, however, found little use in the context of regulatory

pathway analysis. Most of the approaches apply genetic algorithms while trying to model

the underlying, unknown, network [215], or to simulate the network dynamics [90]. However,

to date there are no applications, to the best of our knowledge, of GAs to the analysis of

regulatory pathways in the context of phenotype change.

The capabilities of the GA paradigm have been greatly expanding by adding an additional

level on which information is transmitted from one generation to another, much like human

beings do through their trans-generational culture. These cultural algorithms [151] use a

belief space to incorporate a priori domain knowledge that will be updated throughout the

evolutionary process. Even though cultural algorithms have been shown to work well in a

large number of applications [37, 144, 153, 152], we elected genetic algorithms as a baseline

of what can be achieved through evolutionary computation. Cultural algorithms are an

extension of genetic algorithms and therefore we expect to achieve even better performance

when we will extend to this approach.
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9.2 Determining gene contributions

Using the cut-off impact analysis presented in the Chapter 7, where the gene contribution

can be captured by the factor αg in Eq. 7.1, and genetic algorithms (GA) we propose a

framework to estimate the individual gene contributions in signaling pathways. Given a

predefined set of pathways SP = {P1, P2, . . . , Pk}, we obtain the set of unique genes U

contained in these pathways:

U =
⋃

Pi∈SP

{g ∈ Pi} (9.1)

We design our individual as a vector of size equal to the size of the set U . Each gene, in the

context of genetic algorithms, will be a floating point number between 0 and 1, representing

the contribution of each gene g ∈ U :

αg1 αg2 αg3 . . . αgn

where αgi ∈ [0, 1].

The genetic algorithm has been implemented in the R framework [179], adapting the

genalg package for parallel execution of the evaluation of the individuals. Single point uniform

mutation chance has been set to 10%, while the selection from one generation to another

was elitism of the top 20% of the population ranked by fitness. The size of the population

was selected equal to and double the size of the individual. The type of crossover was single

point. All these parameters have been chosen according to the indications in [78].

The goal of our evaluation function is to capture the ability of the gene weights to model

biological knowledge encoded in the given pathways and not any specific condition (i.e.,

disease). Based to the objective method [175] to compare pathway analysis methods that

was used in Section 6.5 we designed our evaluation function. This comparison technique is

based on the concept of target pathway. In this framework, one selects a number of public

datasets that are obtained from samples associated with a given condition (e.g. colorectal

cancer, pancreatic cancer, Parkinson’s disease, etc.). These conditions are selected based on
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the fact that a known pathway exists for each of them. These pathways become the “target

pathways” for their respective data sets. The idea is that if we did not know what condition

a patient was suffering from, we would like a good pathway analysis method to be able to

correctly identify the associated condition-related pathway as significant in that particular

condition. In other words, the colorectal cancer pathway should be reported as significant in

a colorectal cancer dataset, etc. Therefore, given an a priori defined set of data sets DS with

their associated target pathways, the evaluation function scores each individual by applying

the impact analysis on each data set independently and recording the normalized rank of the

target pathway associated with each data set. The return value of the evaluation function

will be the average normalized rank of the target pathway over all data sets in DS. Hence,

the lower the result of the evaluation function, the better the individual.

9.3 Training

Our starting pool of data sets consists of 24 data sets that represent 12 different conditions

and therefore involving 12 different target pathways. This pool of data sets is available in the

R package KEGGdzPathwaysGEO and is summarized in Table 9.1. We divide this pool into

training and testing groups to emulate two scenarios. These two scenarios were chosen in a

way that captures an ideal environment and the real environment. In the ideal environment,

each one pathway of the 140 pathways available in the KEGG database would be associated

with a dataset. Since this is not the case, in the real environment we have both pathways

that are associated to a dataset and pathways that are not.

For both scenarios we selected the training and testing datasets in a similar fashion. First,

we performed cut-off free impact analysis with the default set of α = 1, on each data set. We

next ordered the data sets based on the normalized rank of the target pathway and selected

datasets starting at the top of the list. This approach allowed us to avoid data sets in which

the target pathway was badly ranked, possibly indicating that those particular data sets
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Data set Disease / Condition Pathway Scen. 1 Scen. 2

GSE1297 Alzheimer’s disease hsa05010 training training
GSE5281 EC Alzheimer’s disease hsa05010 testing testing
GSE5281 HIP Alzheimer’s disease hsa05010 testing testing
GSE5281 VCX Alzheimer’s disease hsa05010 testing testing
GSE20153 Parkinson’s disease hsa05012 testing testing
GSE20291 Parkinson’s disease hsa05012 training training
GSE8762 Huntingon’s disease hsa05016 - testing
GSE4107 Colorectal Cancer hsa05210 training training
GSE8671 Colorectal Cancer hsa05210 testing testing
GSE9348 Colorectal Cancer hsa05210 testing testing
GSE14762 Renal Cancer hsa05211 - -
GSE781 Renal Cancer hsa05211 - -
GSE15471 Pancreatic Cancer hsa05212 training training
GSE16515 Pancreatic Cancer hsa05212 testing testing
GSE19728 Glioma hsa05214 - testing
GSE21354 Glioma hsa05214 - training
GSE6956C Prostate Cancer hsa05215 - training
GSE6956AA Prostate Cancer hsa05215 - testing
GSE3467 Thyroid Cancer hsa05216 - training
GSE3678 Thyroid Cancer hsa05216 - testing
GSE9476 Acute myeloid leukemia hsa05221 training -
GSE18842 Non-Small Cell Lung Cancer hsa05223 - testing
GSE19188 Non-Small Cell Lung Cancer hsa05223 - training
GSE3585 Dilated cardiomyopathy hsa05414 - -

Table 9.1: The pool of data sets used for the analysis with their association to scenario 1 / scenario 2 and
training / testing groups. For a more detailed description see [175]

contained bad data or they were not representative for that particular condition.

The real environment scenario

Based on the ordered list of data sets, in the first scenario we selected as training data

sets the top five data sets that represent different conditions. The testing set was chosen

based on the conditions of five data sets selected as training. All the remaining data sets

that study one of the five conditions was selected as the testing group. The set of pathways

for which the gene contributions will be estimated was chosen based on the training data

sets. We selected five pathways representing the target pathway for the respective conditions.

We then selected the top three pathways (based on the impact analysis results) on each of

the five training data sets to be part of the training set. This provided an additional 11

pathways, generating a training set that included a total of 16 pathways. The set of genes

used in this scenario was the set of genes that appear at least once in any of the pathway

selected for training. We obtained a set of 1,355 genes. As described in Section 9.2, each gene
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is associated with a parameter α. Therefore, each individual had a total of 1,355 genes to

be used in the genetic algorithm search. We choose the size of the population to be equal to

the number of genes of an individual (1,355 individuals), and we performed 100 generations

with a mutation rate of 1%. We applied an elitist selection to the population, after each

evaluation, where the top 20% individuals in the list ranked by the evaluation function were

passed to the next generation with no crossover.

The ideal environment scenario

In the second scenario, based on the same ordered list of data sets we selected the top

ranked data set for each condition as the training group. Given that some of the conditions

did not have at least two data sets associated to them and therefore no testing data set could

be selected, these conditions are removed from further analysis. Two other datasets relative

to renal cancer had to be removed due to the excessive variability of the rank of the target

pathway when the analysis was performed with default parameters. Hence, the training

group would contain eight data sets and the testing group eleven data sets (see Table 9.1).

As this scenario would represent the ideal environment, we only selected for analysis the eight

pathways associated as target pathways with the conditions in the training group. The total

number of unique genes in these pathways was 372. We choose the size of the population to

be 600, and we performed 100 generations with a mutation rate of 1%. We applied an elitist

selection to the population, after each evaluation, where the top 20% individuals in the list

ranked by the evaluation function were passed to the next generation with no crossover.

9.4 Evaluation

For both scenarios, at the end of the evolution of the population we extracted a random

individual among the individuals with the best ranks (smallest value from the evaluation

function) and we evaluated its performance in the testing set. This yielded an average
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Figure 9.1: The evolution of the best and mean evaluations over the entire population at each generation.
The evaluation function for one individual is the mean normalized rank over the training data sets. Because
the evaluation function uses the normalized rank, the minimal value of the evaluation function is dependent
on the total number of pathways evaluated (16 for Scenario 1 and 8 for Scenario 2). This minimal value
achievable is show with a horizontal dotted line and is equal to 1/16 for Scenario 1 and 1/8 for Scenario 2. This
value represents the case where the target pathways are ranked as first in all training data sets. According to
the objective function chosen, the minimal value could not have been achieved due to ties. Other evaluation
functions could do better. Source: [196].

normalized rank of the individual on the testing set of datasets. The evolution of the fitness

function over all generation for each scenario is presented in Fig. 9.1.

For both scenarios, the rank of the best individuals was better than the result obtained

with default parameters. By default parameters, we refer to the case where the contribution

of each gene is considered to be maximum αg = 1 for all genes (see Eq. 6.2). In order to

assess if the performance of the individual was significantly better than a random choice,

we used a bootstrap approach, generating the null distribution of the average normalized

ranks, as described in [57]. We obtained this by creating 1,000 individuals with values

of the gene weights randomly drawn from an uniform distribution with range [0, 1]. Each

individual was then evaluated on the testing set. This procedure yields a p-value, computed

as the number of random individuals that obtain a score lower than the score of the best

individual. This p-value represents the probability of getting a score lower than the best
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Figure 9.2: Null distributions of the average mean ranks of random individuals on the testing sets. The left
panel shows the distribution of the evaluation of random individuals on the testing set associated with the
selection of pathways in the first scenario, while the right panel shows the distribution of the evaluation of
random individuals on the testing set associated with the selection of pathways in the second scenario. The
blue lines represent the value of the average normalized rank of the best individual in the two populations,
while the red lines represent the average mean rank of the default individuals (all the α’s equal to 1). The
results show that the default values are reasonable but only slightly better than those provided by a random
choice. In both cases, the values obtained after the GA search are significantly better than the mean of the
random chance values. Source: [196].

individual just by chance. We performed this procedure for the populations obtained with

both scenarios described in Section 9.3. The best individual of the population obtained from

the first scenario achieved a p-value of 10.4% on the testing set, while the best individual of

the population obtained with the second scenario achieved a p-value of 3.3% on the testing

set. The distributions relative to the two bootstraps are shown in Figure 9.2.

These results show that in both cases the optimization reaches significantly better results

than the results obtained with the default set of parameters. In the testing set of the real

environment scenario described in Section 9.3 a random choice would perform worse than

the optimized parameters 89.6% of the times. In the testing set of the ideal environment

scenario described in Section 9.3 a random choice would perform worse than the optimized

parameters in more than 96% of the times. These values are also considerably better than

those obtained with the default values.
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Figure 9.3: Normalized ranks of target pathways using parameters from best individuals (left side of each
panel) and default parameters (right side of each panel). The left panel shows the comparison between the
best individual of scenario 1 and default parameters in the testing set from scenario 1, while the right panel
shows the comparison between the best individual of scenario 2 and the default parameters in the testing
set from scenario 2. The blue line represents the mean of ranks, while the black line represents the median.
In the left panel (scenario 1, real environment) the optimization procedure results in lower mean rank and
lower median. In the right panel (scenario 2, ideal environment) the optimization procedure results in the
lower mean rank, reduced variance, and the same median. Source: [196].

Figure 9.3 shows the comparisons between the ranks obtained with best individuals and

the ranks obtained with the default parameters for both scenarios when we perform the

analysis in the respective testing sets. The left panel shows the comparison performed in the

testing set of the first scenario. In this scenario the best individual outperforms the default

parameters obtaining a lower mean (0.25 against 0.335), lower median(0.156 against 0.25),

while there is no improvement in terms of variance (0.296 against 0.207). The right panel

shows the comparison performed in the testing set of the second scenario. In this scenario

the best individual obtains a lower mean (0.301 agains 0.357), the same median (0.187), and

a decreased variance (0.038 against 0.102).

9.5 Summary

This chapter presented an evolutionary computation framework able to assess the indi-

vidual gene contribution in the impact analysis of signaling pathways. This framework was

exemplified using two experimental scenarios. The evaluation (i.e., fitness) of each individual
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was performed with the method described in [175] and the data sets available in the R pack-

age KEGGdzPathwaysGEO. We assessed the statistical significance of the results of these

optimization processes with a bootstrap technique, and we confirmed that the results are

significantly better than the results obtained using default parameters. This optimization

framework shows that evolutionary computation approaches such as genetic algorithms can

be successfully applied in the optimization of the parameters of the impact analysis.

The evaluation framework is one of the limitations of this approach, due to the limited

number of data sets included, as well as the fact that two of them, related to renal can-

cer had to be excluded due to the excessive variability of the rank of the target pathway

when the analysis was performed with default parameters. Also, some biological aspects of

the conditions described in the various data sets could be neglected by the target pathway

approach. Probably the most important limitation associated with this framework is still

related to the evaluation of the pathway analysis results. Our evaluation only considered the

rank of the target pathways. An individual was fitter than another one if it the average rank

of the target pathways was lower. In reality, the more important distinction is between those

individuals that rank the target pathways are significant and those that do not. An improve-

ment in rank that still has the target pathways as not-significant is not really an increase

in accuracy, and therefore it should not be represented as an increased fitness. Conversely,

a decrease in ranking within the significance range may not be a decrease in accuracy, and

therefore should not always be penalize as a decrease fitness. However, using a step-like

evaluation function based on the significance would have introduced abrupt changes that we

think would have increased the difficulty of the genetic algorithm search.

Despite the limitations, the results obtained with this framework show the effectiveness

of evolutionary computation techniques in the optimization of parameters in bioinformatic

applications. This framework is general enough to be applied to a multitude of methods for

the analysis of biological pathways, where parameters are often chosen arbitrarily.
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Part III

Chapter 10 Conclusions and future work

Even though the advances in high-throughput technologies had made it easier than ever

to perform comparison between two phenomena, like disease and healthy, our ability to

understand the mechanisms behind these measurements are as challenging as ever. Part of

the challenge lies in the intricate interactions between the disease and the immune system

of the host. This points to the need of developing drugs tailored specific to individual

patients (i.e., personalized medicine). This thesis aims to be a step towards this ultimate

goal by first providing a methodology able to identify patients that are likely to require these

specialized treatments and then provide methodologies to better understand the mechanism

of the disease.

Part I was focused on improving our ability to classify and dichotomize the patient popu-

lation. The classification method used throughout is the Support Vector Machines (SVMs),

one of the most used classification techniques. First, we proposed an approach to increase the

performance and the quality of posterior probability outputs for classifier ensembles. Even

though classifier ensembles were shown to achieve better classification accuracy that single

classifier, the existing methods to generate posterior probabilities for ensembles are rudimen-

tary and either combine the base classifier probability outputs or calibrate the aggregated

value. These approaches are computationally intensive because a posterior probability model

needs to be fitted for each one of the base classifiers. We proposed a method, using bagging

and z-score, that extracts additional information from the decision values of the base classi-



www.manaraa.com

134

fiers to fit a single posterior probability model. To fit the probabilistic outputs to the z-score

statistic, we considered three variations: Gaussian CDF, logistic linear and Z-score Isotonic.

Based on our assessments over 12 datasets from the UCI machine learning repository, the

logistic linear model is generally preferred because of the stable good performance, better

performance at estimating posterior probability for samples prone to misclassification, and

improved computational cost. Alternatively, the Gaussian CDF Z-bag model is easier to

be implemented without further parameter training and it ranks as second best in terms of

accuracy while estimation of posterior can be appropriate if some conditions met. The three

different approaches proposed achieve comparable or better prediction accuracy and poste-

rior probability estimation in comparison with the existing ensemble calibration methods

while reducing computational cost.

Besides improving the performance of existing classifiers, we aimed to augment the ability

of existing classifiers to identify potential disease subtypes in the study population. Existing

classifiers, like the widely used SVMs, are unable to detect patient samples that come from

a completely different distribution than the training set. We proposed a machine learn-

ing technique based on SVMs to automatically detect samples for which the prediction is

unreliable because they are either to dissimilar from the two groups (e.g., disease types or

sub-types) under study or they are too close to the decision hyperplane where a small change

in the training parameters would switch their prediction. We should both on data from the

UCI machine learning repository and gene expression data that our method is able to iden-

tify such subgroups. One of our experiments was to classifying leukemia patients based on

gene expression data. During training, only patients with conventional acute lymphoblastic

leukemia (ALL) and acute myelogenous leukemia (AML) were used to train both the classi-

cal SVM and our method - SVM with uncertainty (USVM). We tested the two models based

on mixed-lineage leukemia (MLL) and the USVM model was able to identify 65% of these

patients as being dissimilar form anything it was trained on, while, as expected, the classical

SVM was unable to identify any.
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With the methods presented in Part I, we are now able to classify better and refine

our understanding of disease subtypes. A parallel step towards personalized medicine is to

improve our ability to understand and characterize disease mechanism. Part II contains the

methods we proposed towards this goal.

The first method was aimed at taking full advance of the rich pathway databases and

the gene interaction they describe. We proposed a technique able to include the reliability

measurement for each gene in addition to other important factors like the type and position

of each of the differentially expressed gene in the pathway, the magnitude of their expression

change, and the type of interaction between all genes in the pathway. We showed that this

methods achieves better performance than the classical methods that ignore this information

on two gene expression data sets.

The second method is aimed at taking full advantage of the recent improvements in gene

quantification technologies and expand the pathway analysis to a true genome-wide scale by

incorporating all measured expression changes. The cut-off free impact analysis is the first

method able to use all gene expression changes, as well as fully incorporate and exploit the

topology of each pathway. We show in a multiple sclerosis study how this approach is able

to obtain consistent results across multiple experiments performed by different groups on

different technologies.

Moreover, we proposed an evolutionary computational technique that is able to set specific

parameters in the cut-off free impact analysis. These parameters, like the contribution of

a gene in a pathway, are hard to derive in practice. Using an objective evaluation function

over 24 datasets we showed that running these parameters achieves better performance than

both random and default parameters.

The pathway analysis methods have been made available as part of Bioconductor 2.12, in

the package ROntoTools.1

1http://bioconductor.org/packages/2.12/bioc/html/ROntoTools.html

http://bioconductor.org/packages/2.12/bioc/html/ROntoTools.html


www.manaraa.com

136

The quest to personalized medicine is not over and additional steps and developments need

to be taken. The machine learning technique proposed here is able to identify a subgroup

that is dissimilar from what it was trained on. However, this is not sensitive enough to be

able to identify the correct treatment for each individual patients. Additional divisions in

the rejected samples and maybe even in the classes used for training need to be sought-after.

The pathway analysis methods proposed here rely on gene expression data that is unable to

capture post-transalational modification like phosphorilation and methilation. Incorporating

additional types of data [83, 178] is a key component in refining our understanding of disease

mechanism for the individual patients.
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APPENDIX

ROntoTools implementation as released as part of Bioconductor

2.12:

> #' Pathway-Express result class

> #'
> #' This class is used to encode the results of the pathway analysis

> #' performed by the function \code{\link{pe}}.

> #'
> #' @details

> #'
> #' The slots \code{input} and \code{ref} record global information

> #' related to the whole analysis, while the \code{pathways} slot

> #' records the specific results as \code{\link{pePathway}} for each

> #' one of the pathways used in the analysis.

> #'
> #' @section Slots:

> #'
> #' \describe{

> #' \item{\code{pathways}:}{A list of \code{\link{pePathway}}

> #' objects.}

> #' \item{\code{input}:}{named vector of fold changes used

> #' for the analysis. The names of the vector are the IDs

> #' originaly used.}

> #' \item{\code{ref}:}{character vector containing the IDs

> #' used as reference in the analysis.}

> #' \item{\code{cutOffFree}:}{boolean value indicating if a

> #' cut-of-free analysis has been performed.}

> #' }

> #'
> #' @seealso \code{\link{pe}}, \code{\link{pePathway}}

> #'
> #' @aliases peRes-class

> #' @exportClass peRes

> setClass("peRes",

+ representation(pathways = "list",

+ input = "numeric",

+ ref = "character",

+ cutOffFree = "logical"),

+ prototype(pathways = list(), cutOffFree = FALSE)

+ )

> #' Class that encodes the result of Pathway-Express for a single pathway

> #'
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> #' @section Slots:

> #'
> #' \describe{

> #' \item{\code{map}:}{an object of type graph (e.g.,

> #' \code{\link{graphNEL}}).}

> #' \item{\code{input}:}{named vector of fold changes

> #' for genes on this pathway. The names of the genes are

> #' the orignal IDS used in the analysis}

> #' \item{\code{ref}:}{vector of reference IDs on this

> #' pathway}

> #' \item{\code{boot}:}{an object of class \code{boot}

> #' encoding the bootstrap information.}

> #' \item{\code{Pert}:}{the gene perturbation factors for

> #' all genes on the pathway, as computed by Pathway-Express.}

> #' \item{\code{Acc}:}{the gene accumulations for all

> #' genes on the pathway, as computed by Pathway-Express.}

> #' }

> #'
> #'
> #' @seealso \code{\link{pe}}, \code{\link{peRes}}

> #'
> #' @aliases pePathway-class

> #' @import graph

> #' @exportClass pePathway

> setClass("pePathway",

+ representation(map = "graph",

+ input = "numeric",

+ ref = "character",

+ boot = "ANY",

+ Pert = "numeric",

+ Acc = "numeric"

+ ),

+ prototype(map = new("graphNEL")

+ )

+ )

> #' Retrieve the node weights of a graph

> #'
> #' @description

> #'
> #' A generic function that returns the node weights of a graph.

> #' If \code{index} is specified, only the weights of the specified

> #' nodes are returned. The user can control which node attribute

> #' is interpreted as the weight.

> #'
> #' @param object A graph, any object that inherits the \code{graph}
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> #' class.

> #' @param index If supplied, a character or numeric vector of node

> #' names or indices.

> #' @param ... Unused.

> #' @param attr The name of the node attribute to use as a weight.

> #' You can view the list of defined node attributes and their default

> #' values using nodeDataDefaults.

> #' @param default The value to use if \code{object} has no node

> #' attribute named by the value of \code{attr}. The default is the

> #' value 1.

> #'
> #' @details

> #'
> #' The weights of all nodes identified by the \code{index} are returned.

> #' If \code{index} is not supplied, the weights of all nodes are returned.

> #'
> #' By default, \code{nodeWeights} looks for an node attribute with name

> #' "weight" and, if found, uses these values to construct the node weight

> #' vector.

> #' You can make use of attributes stored under a different name by

> #' providing a value for the \code{attr} argument.

> #' For example, if \code{object} is a graph instance with an node

> #' attribute named "WTS", then the call \code{nodeWeights(object,

> #' attr="WTS")} will attempt to use those values.

> #'
> #' If the graph instance does not have an node attribute with name given

> #' by the value of the \code{attr} argument, \code{default} will be used

> #' as the weight for all nodes.

> #' Note that if there is an attribute named by \code{attr}, then its

> #' default value will be used for nodes not specifically customized.

> #' See nodeData and nodeDataDefaults for more information.

> #'
> #' @return

> #'
> #' A named vector with the node weights. The names of the vector are

> #' the names of the specified \code{index}, or all nodes if \code{index}

> #' was not provided.

> #'
> #' @seealso

> #'
> #' \link{nodes}, \link{nodeData}

> #'
> #' @examples

> #'
> #' library(graph)
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> #' V <- LETTERS[1:4]

> #' g <- graphNEL(nodes = V, edgemode = "directed")

> #' nodeWeights(g)

> #' nodeWeights(g, "B")

> #' nodeWeights(g, attr = "WT", default = 3)

> #'
> #' @rdname nodeWeights

> #'
> #' @export

> setGeneric("nodeWeights",

+ function(object, index, ..., attr="weight", default=1)

+ standardGeneric("nodeWeights")

+ )

> #' Summarize the results of a Pathway-Express analysis

> #'
> #' @usage Summary(x, pathNames = NULL, totalAcc = TRUE,

> #' totalPert = TRUE, normalize = TRUE,

> #' pPert = TRUE, pAcc = TRUE, pORA = TRUE,

> #' comb.pv = c("pPert", "pORA"), comb.pv.func = compute.fischer,

> #' order.by = "pComb", adjust.method = "fdr")

> #'
> #' @param x Pathways-Express result object obtained using

> #' \code{\link{pe}}

> #' @param pathNames named vector of pathway names;

> #' the names of the vector are the IDs of the pathways

> #' @param totalAcc boolean value indicating if the total

> #' accumulation should be computed

> #' @param totalPert boolean value indicating if the

> #' total perturbation should be computed

> #' @param normalize boolean value indicating if normalization

> #' with regards to the boostrap simulations should be performed

> #' on totalAcc and totalPert

> #' @param pPert boolean value indicating if the significance of

> #' the total perturbation in regards to the bootstrap permutations

> #' should be computed

> #' @param pAcc boolean value indicating if the significance of

> #' the total accumulation in regards to the bootstrap permutations

> #' should be computed

> #' @param pORA boolean value indicating if the over-represtation

> #' p-value should be computed

> #' @param comb.pv vector of the p-value names to be combine

> #' (any of the above p-values)

> #' @param comb.pv.func the function to combine the p-values;

> #' takes as input a vector of p-values and returns the combined p-value

> #' @param order.by the name of the p-value that is used to
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> #' order the results

> #' @param adjust.method the name of the method to adjust

> #' the p-value (see \link{p.adjust})

> #'
> #' @seealso \code{\link{pe}}

> #'
> #' @examples

> #'
> #' # load experiment

> #' load(system.file("extdata/E-GEOD-21942.topTable.RData",

> #' package = "ROntoTools"))

> #' fc <- top$logFC[top$adj.P.Val <= .01]

> #' names(fc) <- top$entrez[top$adj.P.Val <= .01]

> #' ref <- top$entrez

> #'
> #' # load the set of pathways

> #' kpg <- keggPathwayGraphs("hsa")

> #' kpg <- setEdgeWeights(kpg)

> #' kpg <- setNodeWeights(kpg, defaultWeight = 1)

> #'
> #' # perform the pathway analysis

> #' peRes <- pe(fc, graphs = kpg, ref = ref, nboot = 100, verbose = TRUE)

> #'
> #' # obtain summary of results

> #' head(Summary(peRes))

> #'
> #' kpn <- keggPathwayNames("hsa")

> #'
> #' head(Summary(peRes))

> #'
> #' head(Summary(peRes, pathNames = kpn, totalAcc = FALSE,

> #' totalPert = FALSE, pAcc = FALSE, pORA = FALSE,

> #' comb.pv = NULL, order.by = "pPert"))

> #'
> #' @rdname Summary-methods

> #'
> #' @aliases Summary.peRes

> #' @aliases Summary,peRes-method

> #' @export

> setMethod("Summary", c("x" = "peRes"),

+ function(x, pathNames = NULL, totalAcc = TRUE,

+ totalPert = TRUE, normalize = TRUE,

+ pPert = TRUE, pAcc = TRUE, pORA = TRUE,

+ comb.pv = c("pPert", "pORA"),

+ comb.pv.func = compute.fischer,
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+ order.by = "pComb", adjust.method = "fdr")

+ {

+ ifelse <- function(test, trueCase, falseCase){

+ if(test) return(trueCase)

+ else return(falseCase)

+ }

+

+ pathStats <- function(pePath)

+ {

+ pStats <- NULL

+

+ pStats$totalAcc <- ifelse(totalAcc, get.totalAcc(pePath),

+ NULL)

+ pStats$totalPert <- ifelse(totalPert, get.totalPert(pePath),

+ NULL)

+

+ pStats$totalAccNorm <- ifelse(totalAcc & normalize,

+ get.totalAccNorm(pePath), NULL)

+ pStats$totalPertNorm <- ifelse(totalPert & normalize,

+ get.totalPertNorm(pePath), NULL)

+

+ pStats$pPert <- ifelse(pPert, compute.pPert(pePath), NULL)

+ pStats$pAcc <- ifelse(pAcc, compute.pAcc(pePath), NULL)

+

+ pStats$pORA <- ifelse(pORA & !x@cutOffFree,

+ compute.pORA(pePath, length(x@input),

+ length(x@ref)), NULL)

+

+ pStats$pComb <- ifelse(!is.null(comb.pv) &

+ !any(is.null(pStats[comb.pv])),

+ as.numeric(comb.pv.func(unlist(pStats[comb.pv]))), NULL)

+

+ return(unlist(pStats))

+ }

+

+ if (pORA & x@cutOffFree)

+ {

+ pORA <- FALSE

+ if ("pORA" %in% comb.pv)

+ {

+ order.by <- setdiff(comb.pv, "pORA")[1]

+ comb.pv <- NULL

+ }

+ message("The over-representaion p-value is not defined

+ for cut-off free analysis and will not
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+ be computed!")

+ }

+

+ if(!is.null(comb.pv))

+ {

+ if(!all(comb.pv %in% c("pPert","pAcc","pORA")))

+ {

+ warning("The p-value to be combined are not specified

+ correctly. No combination p-value

+ will be calculated!")

+ comb.pv <- NULL

+ if(order.by == "pComb")

+ order.by <- NULL

+ }else{

+ for(i in 1:length(comb.pv))

+ assign(comb.pv[i], TRUE)

+ }

+ }

+

+ topStats <- data.frame(do.call(rbind, lapply(x@pathways,

+ pathStats)))

+

+ if(!is.null(pathNames))

+ {

+ pathNames <- pathNames[rownames(topStats)]

+ topStats <- cbind(pathNames, topStats)

+ }

+

+ if(order.by %in% colnames(topStats))

+ {

+ topStats <- topStats[order(topStats[,order.by]),]

+ }

+

+ allPVs <- c("pPert","pAcc","pORA", "pComb")

+

+ lapply(allPVs[allPVs %in% colnames(topStats)],

+ function(pv)

+ topStats[[paste(pv, "." , adjust.method, sep = "")]] <<-

+ p.adjust(topStats[[pv]], adjust.method)

+ )

+ return(topStats)

+ }

+ )

> #' Set node weights

> #'
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> #' @param graphList a list of \code{graph} (e.g., \code{\link{graphNEL}})

> #' objects

> #' @param weights named vector or matrix; if vector, the node is

> #' going to have the same weight in all graphs it appears;

> #' if matrix, the rows represent nodes and columns represent graphs

> #' and the node will have different weights in each pathway

> #' @param defaultWeight the default weight for all nodes not set

> #' by the parameter \code{weights}

> #'
> #' @return

> #'
> #' The \code{graphList} with the node weights set.

> #'
> #' @examples

> #'
> #' # load the set of pathways

> #' kpg <- keggPathwayGraphs("hsa")

> #'
> #' kpg <- setNodeWeights(kpg)

> #'
> #' nodeWeights(kpg[["path:hsa04110"]])

> #'
> #' @export

> setNodeWeights <- function(graphList, weights = NULL, defaultWeight = 1)

+ {

+ if(is.null(weights))

+ {

+ graphList <- lapply(graphList,

+ function(g)

+ {

+ nodeDataDefaults(g, "weight") <- defaultWeight

+ return(g)

+ })

+ return(graphList)

+ }

+ if(is.vector(weights))

+ {

+ graphList <- lapply(graphList,

+ function(g)

+ {

+ i <- nodes(g)[nodes(g) %in% names(weights)]

+

+ nodeDataDefaults(g, "weight") <- defaultWeight

+

+ if(length(i) != 0)
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+ nodeData(g, i, "weight") <- weights[i]

+

+ return(g)

+ })

+ return(graphList)

+ }

+ if(is.matrix(weights))

+ {

+ graphList <- Recall(graphList, numeric(0), defaultWeight)

+

+

+

+ gi <- names(graphList)[names(graphList) %in% colnames(weights)]

+

+ if(length(gi) == 0)

+ return(graphList)

+

+ for(i in 1:length(gi))

+ {

+

+ w <- weights[,gi[i]]

+ names(w) <- rownames(weights)

+

+

+ g <- graphList[[gi[i]]]

+

+ j <- nodes(g)[nodes(g) %in% names(w)]

+

+ nodeDataDefaults(g, "weight") <- defaultWeight

+

+ if(length(j) != 0)

+ nodeData(g, j, "weight") <- w[j]

+

+ graphList[gi[i]] <- g

+ }

+

+ return(graphList)

+ }

+ return(NULL)

+ }

> #' Set gene weights based on edge type

> #'
> #' \code{setEdgeWeights}

> #'
> #' @param graphList a list of \code{\link{graphNEL}} objects
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> #' @param edgeTypeAttr edge attribute to be considered

> #' as the edge type. If the edge has multiple types,

> #' the edge type attribute is considered as a comma separeted

> #' list of types

> #' @param edgeWeightByType named list of weigths, where

> #' the names of the list are the

> #' edge type (values of the attribute defined by \code{edgeTypeAttr})

> #' @param defaultWeight default value for an edge with

> #' a type not defined in \code{edgeWeightByType}

> #' @param combineWeights for the edges with multiple types,

> #' the function to be applied on the vector of weights

> #' @param nodeOnlyGraphs boolean value marking if graphs

> #' with no edges should be returned or not; note that graphs with

> #' all edge weights equal to 0 are considered node only graphs

> #'
> #' @return

> #'
> #' The \code{graphList} with the edge weights set.

> #'
> #' @examples

> #'
> #' # load the set of pathways

> #' kpg <- keggPathwayGraphs("hsa")

> #'
> #' kpg <- setEdgeWeights(kpg)

> #'
> #' edgeWeights(kpg[["path:hsa04110"]])

> #'
> #' @export

> setEdgeWeights <- function(graphList,

+ edgeTypeAttr = "subtype",

+ edgeWeightByType = list(

+ activation = 1, inhibition = -1,

+ expression = 1, repression = -1),

+ defaultWeight = 0,

+ combineWeights = sum,

+ nodeOnlyGraphs = FALSE)

+ {

+ graphList <- lapply(graphList,

+ function(g)

+ {

+ gftM <- graph2ftM(g)

+

+ if(nrow(gftM) == 0)

+ return(g)
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+

+ weigths <- sapply(strsplit(unlist(edgeData(g,

+ gftM[,1], gftM[,2], edgeTypeAttr)), ","),

+ function(x){

+ weightNames <- names(edgeWeightByType)[

+ match(x, names(edgeWeightByType))]

+ weightNames <- weightNames[!is.na(weightNames)]

+

+ if(length(weightNames) == 0)

+ return(defaultWeight)

+

+ return(combineWeights(unlist(edgeWeightByType[

+ weightNames])))

+ })

+

+ suppressWarnings(g <- addEdge(gftM[,1], gftM[,2], g, weigths))

+

+ return(g)

+ })

+

+ if (!nodeOnlyGraphs)

+ return(graphList[sapply(graphList, function(x)

+ length(unlist(edges(x)))) != 0])

+

+ return(graphList)

+ }

> #' @import KEGGREST

> #' @import KEGGgraph

> loadKEGGpathwayDataREST <- function(organism = "hsa",

+ updateCache = FALSE,

+ verbose = TRUE)

+ {

+ dfUnparsed <- paste(system.file("extdata",package="ROntoTools"),

+ "/KEGGRESTunparsed_",organism,".RData", sep = "")

+

+ if (!file.exists(dfUnparsed) || updateCache)

+ {

+ pathList <- keggList("pathway", organism)

+

+ if (verbose)

+ {

+ message("Downloading pathway data:")

+ pb <- txtProgressBar(min = 0, max = length(pathList)-1, style = 3)

+ }

+



www.manaraa.com

148

+ tmpDir <- tempfile("ROntoTools", tempdir())

+ dir.create(tmpDir)

+

+

+ allPathwayInfo <- lapply(names(pathList),

+ function(pathID) {

+

+ p <- keggGet(pathID, "kgml")

+

+ pKgml <- file.path(tmpDir,

+ paste(strsplit(pathID, ":")[[1]][2], ".kgml",

+ sep = ""))

+

+ write(p, pKgml)

+

+ pathData <- parseKGML(pKgml)

+

+ file.remove(pKgml)

+

+ if(verbose)

+ setTxtProgressBar(pb, getTxtProgressBar(pb) + 1)

+ return(pathData)

+ })

+ dbInfo <- keggInfo("pathway")

+

+ file.remove(tmpDir)

+

+ save(allPathwayInfo, dbInfo, file = dfUnparsed)

+ }else{

+ load(dfUnparsed)

+ message(paste("Using cached pathway data.

+ Database info:\n", dbInfo, sep =""))

+ }

+

+ return(allPathwayInfo)

+ }

> #' Download and parse KEGG pathway data

> #'
> #' @param organism organism code as defined by KEGG

> #' @param targRelTypes target relation types

> #' @param relPercThresh percentage of the number of relation

> #' types over all possible relations in the pathway

> #' @param nodeOnlyGraphs allow graphs with no edges

> #' @param updateCache re-download KEGG data

> #' @param verbose show progress of downloading and parsing
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> #'
> #' @return

> #'
> #' A list of \code{\link{graphNEL}} objects encoding the pathway

> #' information.

> #'
> #' @seealso \code{\link{keggPathwayNames}}

> #'
> #' @examples

> #'
> #' # The pathway cache provided as part of the pathway contains only the

> #' # pathways that passed the default filtering. We recommend,

> #' # re-downloading the pathways using the updateCache parameter

> #' kpg <- keggPathwayGraphs("hsa")

> #'
> #' # to update the pathway cache for human run:

> #' # kpg <- keggPathwayGraphs("hsa", updateCache = TRUE)

> #' # this is time consuming and depends on the available bandwith.

> #'
> #' head(names(kpg))

> #'
> #' kpg[["path:hsa04110"]]

> #' head(nodes(kpg[["path:hsa04110"]]))

> #' head(edges(kpg[["path:hsa04110"]]))

> #'
> #' @importMethodsFrom KEGGgraph

> #' @export

> keggPathwayGraphs <- function(organism = "hsa",

+ targRelTypes = c("GErel","PCrel","PPrel"),

+ relPercThresh = 0.9,

+ nodeOnlyGraphs = FALSE,

+ updateCache = FALSE,

+ verbose = TRUE)

+ {

+ defaultParameters <- FALSE

+ if ((organism == "hsa") & all(targRelTypes == c("GErel","PCrel",

+ "PPrel")) & (relPercThresh == 0.9) & (nodeOnlyGraphs == FALSE))

+ defaultParameters <- TRUE

+

+ allPathwayInfo <- loadKEGGpathwayDataREST(organism, updateCache,

+ verbose)

+

+ if (defaultParameters & !updateCache)

+ {

+ message("Default parameters detected. Using pre-parsed data.")



www.manaraa.com

150

+ load(paste(system.file("extdata",package="ROntoTools"),

+ "/kpgDefault.RData", sep = ""))

+ return(pathwayGraphs)

+ }

+

+ l <- lapply(allPathwayInfo, function(path) {

+ l <- sapply(edges(path), getType)

+ if(length(l) == 0)

+ return(0)

+ t <- table(l)

+ return(t)

+ })

+

+ allRelTypes <- unique(unlist(lapply(l, names)))

+

+ counts <- do.call(rbind,lapply(l, function(x)

+ as.vector(x[allRelTypes])))

+ colnames(counts) <- allRelTypes

+

+ accIndex <- rowSums(counts[,targRelTypes], na.rm=T) /

+ rowSums(counts, na.rm=T) >= relPercThresh

+ accIndex[is.na(accIndex)] <- FALSE

+ allPathwayInfo <- allPathwayInfo[accIndex]

+

+ names(allPathwayInfo) <- sapply(allPathwayInfo, getName)

+

+ if (verbose)

+ {

+ message("Parsing pathway data:")

+ pb <- txtProgressBar(min = 0, max = length(allPathwayInfo)-1,

+ style = 3)

+ }

+

+ pathwayGraphs <- lapply(allPathwayInfo, function(g)

+ {

+ g <- KEGGgraph::KEGGpathway2Graph(g)

+ kg <- new("graphNEL", nodes(g), edges(g), edgemode = "directed")

+

+ if (length(getKEGGedgeData(g)) == 0)

+ {

+ if (verbose)

+ setTxtProgressBar(pb, getTxtProgressBar(pb) + 1)

+ return(NULL)

+ }

+ edgeDataDefaults(kg, "subtype") <- NA
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+

+ relGeneTable <- data.frame(cbind(

+ do.call(rbind, strsplit(names(getKEGGedgeData(g)), '~')),
+ sapply(getKEGGedgeData(g), function(e)

+ paste(lapply(getSubtype(e), getName), collapse=","))

+ ), stringsAsFactors = FALSE)

+ names(relGeneTable) <- c("from","to","subtype")

+

+ edgeData(kg, relGeneTable$from, relGeneTable$to, "subtype") <-

+ relGeneTable$subtype

+

+ if (verbose)

+ setTxtProgressBar(pb, getTxtProgressBar(pb) + 1)

+

+ return(kg)

+ })

+

+ pathwayGraphs <- pathwayGraphs[!sapply(pathwayGraphs, is.null)]

+

+ if (defaultParameters)

+ save(pathwayGraphs, paste(system.file("extdata",package="ROntoTools"),

+ "/kpgDefault.RData", sep = ""))

+

+ return(pathwayGraphs)

+ }

> #' Obtain KEGG pathway titles

> #'
> #' @param organism organism code as defined by KEGG

> #' @param updateCache re-download KEGG data

> #' @param verbose show progress of downloading and parsing

> #'
> #' @return

> #'
> #' A named vector of pathway titles. The names of the vector

> #' are the pathway KEGG IDs.

> #'
> #' @seealso \code{\link{keggPathwayGraphs}}

> #'
> #' @examples

> #'
> #' kpn <- keggPathwayNames("hsa")

> #'
> #' # to update the pathway cache for human run:

> #' # kpn <- keggPathwayNames("hsa", updateCache = TRUE)

> #' # this is time consuming and depends on the available bandwidth.
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> #'
> #' head(kpn)

> #'
> #' @import KEGGgraph

> #' @export

> keggPathwayNames <- function(organism = "hsa",

+ updateCache = FALSE,

+ verbose = TRUE)

+ {

+ allPathwayInfo <- loadKEGGpathwayDataREST(organism, updateCache,

+ verbose)

+

+ allNames <- sapply(allPathwayInfo, getTitle)

+

+ names(allNames) <- sapply(allPathwayInfo, getName)

+

+ return(allNames)

+ }

> #' @rdname nodeWeights

> #' @aliases nodeWeights,graph,character-method

> #' @import graph

> #' @export

> setMethod("nodeWeights", signature(object="graph", index="character"),

+ function (object, index, attr, default)

+ {

+ if (!is.character(attr) || length(attr) != 1)

+ stop("'attr' must be character(1)")

+ if (!attr %in% names(nodeDataDefaults(object))) {

+ nodeDataDefaults(object, attr) <- default

+ }

+ nw <- nodeData(object, index, attr = attr)

+ if (length(nw) != 0)

+ return(unlist(nw))

+ else

+ return(numeric(0))

+ }

+ )

> #' @rdname nodeWeights

> #' @aliases nodeWeights,graph,numeric-method

> #' @import graph

> #' @export

> setMethod("nodeWeights", signature(object="graph", index="numeric"),

+ function (object, index, attr, default)

+ {

+ index <- nodes(object)[index]
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+ nodeWeights(object, index, attr = attr, default = default)

+ })

> #' @rdname nodeWeights

> #' @aliases nodeWeights,graph,missing-method

> #' @import graph

> #' @export

> setMethod("nodeWeights", signature(object="graph", index="missing"),

+ function (object, index, attr, default)

+ {

+ index <- nodes(object)

+ nodeWeights(object, index, attr = attr, default = default)

+ })#' Pathway-Express: Pathway analysis of signaling pathways

> #'
> #' @param x named vector of log fold changes for the

> #' differentially expressed genes; \code{names(x)} must use

> #' the same id's as \code{ref} and the nodes of the \code{graphs}

> #' @param graphs list of pathway graphs as objects of type

> #' \code{graph} (e.g., \code{\link{graphNEL}}); the graphs must

> #' be weighted graphs (i.e., have an attribute \code{weight}

> #' for both nodes and edges)

> #' @param ref the reference vector for all genes in the analysis;

> #' if the reference is not provided or it is identical to \code{names(x)}

> #' a cut-off free analysis is performed

> #' @param nboot number of bootstrap iterations

> #' @param verbose print progress output

> #' @param cluster a cluster object created by makeCluster for

> #' parallel computations

> #' @param seed an integer value passed to set.seed() during

> #' the boostrap permutations

> #'
> #' @details

> #'
> #' See details in the cited articles.

> #'
> #' @return

> #'
> #' An object of class \code{\link{peRes}}.

> #'
> #' @references

> #'
> #' Voichita C., Donato M., Draghici S.: "Incorporating gene

> #' significance in the impact analysis of signaling pathways",

> #' IEEE Machine Learning and Applications (ICMLA), 2012 11th

> #' International Conference on, Vol. 1, p.126-131, 2012

> #'
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> #' Tarca AL., Draghici S., Khatri P., Hassan SS., Kim J., Kim CJ.,

> #' Kusanovic JP., Romero R.: "A Signaling Pathway Impact Analysis

> #' for Microarray Experiments", 2008, Bioinformatics, 2009, 25(1):75-82.

> #'
> #' Khatri P., Draghici S., Tarca AL., Hassan SS., Romero R.:

> #' "A system biology approach for the steady-state analysis of

> #' gene signaling networks". Progress in Pattern Recognition,

> #' Image Analysis and Applications, Lecture Notes in Computer

> #' Science. 4756:32-41, November 2007.

> #'
> #' Draghici S., Khatri P., Tarca A.L., Amin K., Done A., Voichita C.,

> #' Georgescu C., Romero R.: "A systems biology approach for

> #' pathway level analysis". Genome Research, 17, 2007.

> #'
> #' @seealso \code{\link{Summary}}, \code{\link{plot.peRes}},

> #' \code{\link{keggPathwayGraphs}}, \code{\link{setNodeWeights}},

> #' \code{\link{setEdgeWeights}}

> #'
> #' @examples

> #'
> #' # load a multiple sclerosis study (public data available in

> #' # Array Express ID: E-GEOD-21942)

> #' # This file contains the top table, produced by the limma package with

> #' # added gene information. All the probe sets with no gene associate to

> #' # them, have been removed. Only the most significant probe set for

> #' # each gene has been kept (the table is already ordered by p-value)

> #' # The table contains the expression fold change and signficance of

> #' # each probe set in peripheral blood mononuclear cells (PBMC) from

> #' # 12 MS patients and 15 controls.

> #' load(system.file("extdata/E-GEOD-21942.topTable.RData",

> #' package = "ROntoTools"))

> #' head(top)

> #'
> #' # select differentially expressed genes at 1% and save their fold

> #' # change in a vector fc and their p-values in a vector pv

> #' fc <- top$logFC[top$adj.P.Val <= .01]

> #' names(fc) <- top$entrez[top$adj.P.Val <= .01]

> #'
> #' pv <- top$P.Value[top$adj.P.Val <= .01]

> #' names(pv) <- top$entrez[top$adj.P.Val <= .01]

> #'
> #' # alternativly use all the genes for the analysis

> #' # NOT RUN:

> #' # fc <- top$logFC

> #' # names(fc) <- top$entrez
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> #'
> #' # pv <- top$P.Value

> #' # names(pv) <- top$entrez

> #'
> #' # get the reference

> #' ref <- top$entrez

> #'
> #' # load the set of pathways

> #' kpg <- keggPathwayGraphs("hsa")

> #'
> #' # set the beta information (see the citated documents for

> #' # meaning of beta)

> #' kpg <- setEdgeWeights(kpg)

> #'
> #' # inlcude the significance information in the analysis (see

> #' # Voichita:2012 for more information)

> #' # set the alpha information based on the pv with one of the

> #' # predefined methods

> #' kpg <- setNodeWeights(kpg, weights = alphaMLG(pv), defaultWeight = 1)

> #'
> #' # perform the pathway analysis

> #' # in order to obtain accurate results the number of boostraps, nboot,

> #' # should be increase to a number like 2000

> #' peRes <- pe(fc, graphs = kpg, ref = ref, nboot = 100, verbose = TRUE)

> #'
> #' # obtain summary of results

> #' head(Summary(peRes))

> #'
> #' @export

> pe <- function(x, graphs, ref = NULL, nboot = 2000, verbose = TRUE,

+ cluster = NULL, seed = NULL)

+ {

+ cutOffFree <- FALSE

+ if (is.null(ref))

+ {

+ ref <- names(x)

+ cutOffFree <- TRUE

+ }

+ else

+ {

+ if (!any(is.na(match(ref,names(x)))))

+ {

+ warning("All the reference IDs are part of the input.

+ Cut-off free analysis is performed.")

+ ref <- names(x)
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+ cutOffFree <- TRUE

+ }

+ }

+

+ preservedSeed <- NULL

+ if (exists(".Random.seed"))

+ preservedSeed <- .Random.seed

+

+ if(!is.null(seed))

+ set.seed(seed)

+

+ if (any(is.na(match(names(x), ref))))

+ {

+ warning("There are input IDs not available in the reference.

+ These will be excluded from analysis.")

+ x <- x[!is.na(match(names(x), ref))]

+ }

+

+ peRes <- pf.helper(x = x, ref = ref, graphs = graphs, nboot = nboot,

+ verbose = verbose, cluster = cluster, seed = seed)

+ peRes@cutOffFree <- cutOffFree

+

+ if(is.null(preservedSeed))

+ {

+ if(!is.null(seed))

+ rm(.Random.seed)

+ }

+ else

+ .Random.seed <- preservedSeed

+

+ return(peRes)

+ }

> #' @import parallel

> pf.helper <- function(x, graphs, ref = NULL, nboot = 2000,

+ verbose = TRUE, cluster = NULL, seed = NULL)

+ {

+ if(verbose)

+ {

+ message("Performing pathway analysis...")

+ if(is.null(cluster))

+ {

+ pb <- txtProgressBar(min = 0, max = length(graphs), style = 3)

+ }

+ }

+
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+ t1 <- Sys.time()

+ if (is.null(cluster))

+ {

+ allBoot <- lapply(graphs, function(g, seed) {

+ if(!is.null(seed))

+ set.seed(seed)

+ ret <- pe.boot(g, x = x, ref = ref, nboot = nboot)

+ if(verbose)

+ setTxtProgressBar(pb, getTxtProgressBar(pb) + 1)

+ return(ret)

+ }, seed = seed)

+ }

+ else

+ {

+ clusterExport(cluster, c("pe.boot", "compute.inverse", "compute.B"))

+ clusterEvalQ(cluster, library(ROntoTools))

+

+ allBoot <- parLapply(cluster, graphs, function(g, seed) {

+ if(!is.null(seed))

+ set.seed(seed)

+ ret <- pe.boot(g, x = x, ref = ref, nboot = nboot)

+ return(ret)

+ }, seed = seed)

+

+ }

+ t2 <- Sys.time()

+

+ if(verbose)

+ {

+ message("Analysis completed in ", format(t2-t1), ".")

+ }

+

+ allBoot <- allBoot[!sapply(allBoot, is.null)]

+

+ peRes <- new("peRes", pathways = allBoot, input = x, ref = ref)

+

+ return(peRes)

+ }

> #' @import boot

> #' @keywords internal

> pe.boot <- function(g, x, ref, nboot, all.genes = F)

+ {

+ inv <- compute.inverse(compute.B(g))

+

+ pePath <- new("pePathway",
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+ map = g,

+ input = x[names(x) %in% nodes(g)],

+ ref = ref[ref %in% nodes(g)])

+

+ if (is.null(inv) | (length(pePath@input) == 0))

+ return(NULL)

+

+ # same number of DE genes at any position in the pathway

+ # (given by the gene from the pathway in the reference)

+ ran.gen.de <- function(x, l) {

+ y <- sample(l$fc, length(x))

+ names(y) <- sample(l$ref, length(x))

+ return(y)

+ }

+

+ pePath@boot <- boot(pePath@input,

+ function(x, inv) {

+ xx <- rep(0, nrow(inv)); names(xx) <- rownames(inv);

+ xx[names(x)] <- x

+ xx <- xx * nodeWeights(pePath@map, names(xx))

+ tt = inv %*% xx;

+ ret <- c(sum(abs(tt-xx)), sum(abs(tt)))

+ names(ret) <- c("tAcc", "tPert")

+ return(ret)

+ },

+ nboot,

+ "parametric", ran.gen = ran.gen.de, mle =

+ list(ref = pePath@ref, fc = as.numeric(x)),

+ inv = inv

+ )

+ colnames(pePath@boot$t) <- names(pePath@boot$t0)

+

+ xx <- rep(0, nrow(inv))

+ names(xx) <- rownames(inv)

+ xx[names(pePath@input)] <- pePath@input

+ pePath@Pert = (inv %*% xx)[,1];

+ pePath@Acc = pePath@Pert - xx

+

+ return(pePath)

+ }

> compute.inverse <- function(M, eps = 1e-5)

+ {

+ if ( abs(det(M)) >= eps )

+ {

+ s = svd(M);
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+ inv = s$v %*% diag(1/s$d) %*% t(s$u)

+ rownames(inv) <- colnames(inv) <- rownames(M)

+ return(inv)

+ }else{

+ return(NULL)

+ }

+ }

> compute.B <- function(g, non.zero = TRUE)

+ {

+ if (non.zero)

+ # number of downstream genes (like in SPIA)

+ nds <- sapply(edgeWeights(g), function(x) sum(x != 0 ))

+ else

+ nds <- sapply(edges(g), length)

+

+ # add 1 for all genes that do not have downstream genes to avoid

+ # division by 0 this does not affect the computation

+ nds[nds == 0] <- 1

+

+ # compute B = (I - beta/nds)

+ #B <- t(diag(length(nodes(g))) - as(g, "matrix") / nds)

+ B <- diag(length(nodes(g))) - t(as(g, "matrix")) /

+ matrix(nds, byrow=TRUE, nrow = length(nds), ncol = length(nds))

+

+ return(B)

+ }

> compute.pAcc <- function(pePath)

+ ifelse( !all(pePath@boot$t[,"tAcc"] == 0),

+ compute.bootPV(pePath@boot$t0["tAcc"], pePath@boot$t[,"tAcc"]),

+ NA)

> compute.pPert <- function(pePath)

+ ifelse( !all(pePath@boot$t[,"tPert"] == 0),

+ compute.bootPV(pePath@boot$t0["tPert"],

+ pePath@boot$t[,"tPert"]), NA)

> compute.pORA <- function(pePath, inputSize, refSize)

+ phyper(q = length(pePath@input)-1,

+ m = length(pePath@ref),

+ n = refSize-length(pePath@ref),

+ k = inputSize,

+ lower.tail = FALSE)

> get.totalAcc <- function(pePath)

+ as.numeric(pePath@boot$t0["tAcc"])

> get.totalAccNorm <- function(pePath)

+ ifelse( !all(pePath@boot$t[,"tAcc"] == 0),

+ as.numeric((pePath@boot$t0["tAcc"] -
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+ mean(pePath@boot$t[,"tAcc"])) /

+ sd(pePath@boot$t[,"tAcc"])),

+ NA)

> get.totalPert <- function(pePath)

+ as.numeric(pePath@boot$t0["tPert"])

> get.totalPertNorm <- function(pePath)

+ ifelse( !all(pePath@boot$t[,"tPert"] == 0),

+ as.numeric((pePath@boot$t0["tPert"] -

+ mean(pePath@boot$t[,"tPert"])) /

+ sd(pePath@boot$t[,"tPert"])),

+ NA)

> #' Plot pathway level statistics

> #'
> #' @description Display graphical representation of pathway level

> #' statistic like:

> #' i) two way comparison between the measured expression change and

> #' one of the factors computed by Pathway-Express (\code{\link{pe}}) or

> #' ii) the boostrap statistics of the same factors.

> #'
> #'
> #' @param x an object of type \code{\link{pePathway}}

> #' @param y if provided, the factor to be ploted (either \code{Acc}

> #' (default) or \code{Pert}; see \code{\link{pePathway}})

> #' @param ... Arguments to be passed to methods,

> #' such as \code{\link{par}}

> #' @param type type of plot (either \code{two.way} (default) or

> #' \code{boot})

> #' @param eps any value smaller than this will be ploted as 0

> #'
> #' @seealso \code{\link{pe}}, \code{\link{plot.peRes}},

> #' \code{\link{peNodeRenderInfo}}, \code{\link{peEdgeRenderInfo}}

> #'
> #' @examples

> #'
> #' # load experiment

> #' load(system.file("extdata/E-GEOD-21942.topTable.RData",

> #' package = "ROntoTools"))

> #' fc <- top$logFC[top$adj.P.Val <= .01]

> #' names(fc) <- top$entrez[top$adj.P.Val <= .01]

> #' ref <- top$entrez

> #'
> #' # load the set of pathways

> #' kpg <- keggPathwayGraphs("hsa")

> #' kpg <- setEdgeWeights(kpg)

> #' kpg <- setNodeWeights(kpg, defaultWeight = 1)
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> #'
> #' perform the pathway analysis (for more accurate results use

> #' nboot = 2000)

> #' peRes <- pe(fc, graphs = kpg, ref = ref, nboot = 100, verbose = TRUE)

> #'
> #' plot(peRes@@pathways[[50]])

> #'
> #' plot(peRes@@pathways[[50]], "Pert", main = "Perturbation factor")

> #'
> #' plot(peRes@@pathways[[50]], type = "boot")

> #'
> #' plot(peRes@@pathways[[50]], "Pert", type = "boot",

> #' main = "Perturbation factor")

> #'
> #' @rdname plot.pePathway-methods

> #' @name plot.pePathway

> #'
> #' @aliases plot.pePathway

> #' @aliases plot,pePathway,missing-method

> #' @export

> setMethod("plot", signature(x="pePathway", y="missing"),

+ function(x, y, ..., type = "two.way", eps = 1e-6)

+ {

+ plot(x, y = "Acc", ..., type = type, eps = eps)

+ }

+ )

> #' @rdname plot.pePathway-methods

> #'
> #' @aliases plot.pePathway

> #' @aliases plot,pePathway,character-method

> #' @export

> setMethod("plot", signature(x="pePathway", y="character"),

+ function(x, y, main = "", ... , type = "two.way", eps = 1e-6)

+ {

+ if (!(y %in% c("Acc", "Pert")))

+ stop("Undefined slot selected: ", y,".")

+

+ switch(type,

+ two.way={

+ iy <- y

+

+ extInput <- rep(0, length(slot(x, iy)))

+ names(extInput) <- names(slot(x, iy))

+ extInput[names(x@input)] <- x@input

+
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+ cl <- rep("black", length(slot(x, iy)))

+ cl[abs(slot(x, iy)) >= eps] <- "green"

+ cl[abs(extInput) >= eps] <- "blue"

+ cl[abs(slot(x, iy)) >= eps & abs(extInput) >=

+ eps] <- "red"

+

+ plot(slot(x, iy), extInput, pch = 16, xlab = y,

+ ylab = "Log2 FC", main = main, ...)

+ abline(v=0,h=0, lwd = .5)

+ points(slot(x, iy), extInput, pch = 16, col = cl)

+

+ return(invisible())

+ },

+ boot={

+ iy <- paste("t", y, sep = "")

+

+ tB <- x@boot$t0[iy]

+ allB <- x@boot$t[,iy]

+

+ tB <- (tB - mean(allB)) / sd(allB)

+ allB <- (allB - mean(allB)) / sd(allB)

+

+ plot(density(allB), xlab = y, main = main, ...)

+ abline(v=0, lwd = .5)

+ abline(v=tB, lwd = 1, col = "red")

+

+ return(invisible())

+ }

+ )

+ stop(type, " is not a valid plot type.")

+

+ }

+ )

> #' Plot Pathway-Express result

> #'
> #' @description Display a two-way plot using two of the p-values

> #' from the Pathway-Express analysis.

> #'
> #' @param x an object of type \code{\link{peRes}}

> #' @param y vector of two p-values names to be combined using

> #' \code{comb.pv.func} (default: \code{c("pAcc", "pORA")}).

> #' @param ... Arguments to be passed to methods, such as

> #' \code{\link{par}}.

> #' @param comb.pv.func the function to combine the p-values -

> #' takes as input a vector of p-values
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> #' and returns the combined p-value (default:

> #' \code{\link{compute.fischer}}).

> #' @param adjust.method the name of the method to adjust the

> #' p-value (see \code{\link{p.adjust}})

> #' @param threshold corrected p-value threshold

> #' @param eps any value smaller than this will be considered as

> #' \code{eps} (default: \code{1e-6}).

> #'
> #' @seealso \code{\link{pe}}, \code{\link{Summary.peRes}},

> #' \code{\link{plot.pePathway}}

> #'
> #' @examples

> #'
> #' # load experiment

> #' load(system.file("extdata/E-GEOD-21942.topTable.RData",

> #' package = "ROntoTools"))

> #' fc <- top$logFC[top$adj.P.Val <= .01]

> #' names(fc) <- top$entrez[top$adj.P.Val <= .01]

> #' ref <- top$entrez

> #'
> #' # load the set of pathways

> #' kpg <- keggPathwayGraphs("hsa")

> #' kpg <- setEdgeWeights(kpg)

> #' kpg <- setNodeWeights(kpg, defaultWeight = 1)

> #'
> #' perform the pathway analysis (for more accurate results use

> #' nboot = 2000)

> #' peRes <- pe(fc, graphs = kpg, ref = ref, nboot = 100, verbose = TRUE)

> #'
> #' plot(peRes)

> #'
> #' plot(peRes, c("pPert","pORA"), comb.pv.func = compute.normalInv,

> #' threshold = .01)

> #'
> #' @rdname plot.peRes-methods

> #' @name plot.peRes

> #'
> #' @aliases plot.peRes

> #' @aliases plot,peRes,missing-method

> #' @export

> setMethod("plot", signature(x="peRes", y="missing"),

+ function(x, y, ... , comb.pv.func = compute.fischer,

+ adjust.method = "fdr",

+ threshold = .05, eps = 1e-6)

+ {
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+ plot(x, y = c("pAcc", "pORA"), ... , comb.pv.func = comb.pv.func,

+ adjust.method = adjust.method,

+ threshold = threshold, eps = eps)

+ }

+ )

> #' @rdname plot.peRes-methods

> #'
> #' @aliases plot.peRes

> #' @aliases plot,peRes,character-method

> #' @export

> setMethod("plot", signature(x="peRes", y="character"),

+ function(x, y, ... , comb.pv.func = compute.fischer,

+ adjust.method = "fdr", threshold = .05, eps = 1e-6)

+ {

+

+ st <- Summary(x, comb.pv = y,

+ comb.pv.func = comb.pv.func,

+ adjust.method = adjust.method)

+ st <- st[!is.na(st[, paste("pComb", adjust.method,

+ sep = ".")]),]

+

+ st[,y[1]][st[,y[1]] <= eps] <- eps

+ st[,y[2]][st[,y[2]] <= eps] <- eps

+

+ i <- st[, paste("pComb", adjust.method, sep = ".")] <=

+ threshold

+ thr.comb <- mean(min(st[!i,"pComb"]),max(st[i,"pComb"]))

+

+ xrange <- c(min(-log(st[,y[1]])), max(-log(st[,y[1]])))

+ xrange[2] <- xrange[2] + (xrange[2]-xrange[1]) * .1

+ yrange <- c(min(-log(st[,y[2]])), max(-log(st[,y[2]])))

+ yrange[2] <- yrange[2] + (yrange[2]-yrange[1]) * .1

+

+ i <- seq(xrange[1], xrange[2], length.out=200)

+ j <- seq(yrange[1], yrange[2], length.out=200)

+ expGrid <- expand.grid(i,j)

+ z <- apply(1/exp(expGrid), 1, comb.pv.func) <= thr.comb

+

+ plot(c(min(-log(st[,y[1]])),min(-log(st[,y[2]]))),

+ xlab = y[1], ylab = y[2],

+ xlim = xrange,

+ ylim = yrange,

+ col = "white", ...)

+ nonSig <- expGrid[!z,][chull(expGrid[!z,]),]

+ sig <- expGrid[z,][chull(expGrid[z,]),]
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+

+ polygon(nonSig, col="gray90")

+ polygon(sig, col="lightcyan")

+

+ i <- st[, paste("pComb", adjust.method, sep = ".")] <=

+ threshold

+

+ points(-log(st[,y[1]]), -log(st[,y[2]]), xlab = y[1],

+ ylab = y[2], pch = 19)

+ if (any(i))

+ {

+ points(-log(st[,y[1]])[i], -log(st[,y[2]])[i], pch = 21,

+ bg = "red")

+ text(-log(st[,y[1]])[i], -log(st[,y[2]])[i] - .5,

+ labels = rownames(st)[i],

+ cex = .75)

+ }

+

+ i <- st[, paste(y[1], adjust.method, sep = ".")] <= threshold

+ if (any(i))

+ {

+ thr1 <- mean(min(st[!i,y[1]]),max(st[i,y[1]]))

+ abline(v = -log(thr1), col = "red", lwd = 2, lty = 2)

+ }

+

+ i <- st[, paste(y[2], adjust.method, sep = ".")] <= threshold

+ if (any(i))

+ {

+ thr2 <- mean(min(st[!i,y[2]]),max(st[i,y[2]]))

+ abline(h = -log(thr2), col = "red", lwd = 2, lty = 2)

+ }

+ }

+ )

> #' Extract edge render information from a \code{pePathway} object

> #'
> #' @param x an object of class \code{\link{pePathway}}

> #' @param pos.col color of the edges with possitive weight

> #' @param pos.lty line type of the edges with possitive weight

> #' @param pos.ah arrow head of the edges with possitive weight

> #' @param neg.col color of the edges with negative weight

> #' @param neg.lty line type of the edges with negative weight

> #' @param neg.ah arrow head of the edges with negative weight

> #' @param zero.col color of the edges with zero weight

> #' @param zero.lty color of the edges with zero weight

> #' @param zero.ah color of the edges with zero weight
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> #'
> #' @value a named list as expected by \code{\link{edgeRenderInfo}}

> #'
> #' @seealso \code{\link{edgeRenderInfo}},\code{\link{par}}

> #'
> #' @examples

> #'
> #' # load experiment

> #' load(system.file("extdata/E-GEOD-21942.topTable.RData",

> #' package = "ROntoTools"))

> #' fc <- top$logFC[top$adj.P.Val <= .01]

> #' names(fc) <- top$entrez[top$adj.P.Val <= .01]

> #' ref <- top$entrez

> #'
> #' # load the set of pathways

> #' kpg <- keggPathwayGraphs("hsa")

> #' kpg <- setEdgeWeights(kpg)

> #' kpg <- setNodeWeights(kpg, defaultWeight = 1)

> #'
> #' # perform the pathway analysis

> #' peRes <- pe(fc, graphs = kpg, ref = ref, nboot = 100, verbose = TRUE)

> #'
> #' p <- peRes@@pathways[[50]]

> #' g <- layoutGraph(p@@map, layoutType = "dot")

> #' graphRenderInfo(g) <- list(fixedsize = FALSE)

> #' edgeRenderInfo(g) <- peEdgeRenderInfo(p)

> #' nodeRenderInfo(g) <- peNodeRenderInfo(p)

> #' # notice the different type of edges in the graph (solid/dashed

> #' # /dotted)

> #' renderGraph(g)

> #'
> #' @export

> peEdgeRenderInfo <- function(x,

+ pos.col = "black", pos.lty = "solid", pos.ah = "vee",

+ neg.col = "black", neg.lty = "dashed", neg.ah = "tee",

+ zero.col = "lightgray", zero.lty = "dotted", zero.ah = "none")

+ {

+ stopifnot(class(x) == "pePathway")

+

+ ew <- unlist(edgeWeights(x@map))

+

+ aHead <- rep(zero.ah, length(edgeNames(x@map)))

+ names(aHead) <- edgeNames(x@map)

+ aHead[ew > 0] <- pos.ah

+ aHead[ew < 0] <- neg.ah
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+ aHead <- aHead[setdiff(seq(along=ew), removedEdges(x@map))]

+

+ eCol <- rep(zero.col, length(edgeNames(x@map)))

+ names(eCol) <- edgeNames(x@map)

+ eCol[ew > 0] <- pos.col

+ eCol[ew < 0] <- neg.col

+ eCol <- eCol[setdiff(seq(along=ew), removedEdges(x@map))]

+

+ eStyle <- rep(zero.lty, length(edgeNames(x@map)))

+ names(eStyle) <- edgeNames(x@map)

+ eStyle[ew > 0] <- pos.lty

+ eStyle[ew < 0] <- neg.lty

+ eStyle <- eStyle[setdiff(seq(along=ew), removedEdges(x@map))]

+

+ return(list(

+ arrowhead = aHead,

+ col = eCol,

+ lty = eStyle

+ ))

+ }

> #' Extract node render information from a \code{pePathway} object

> #'
> #' @param x an object of class \code{\link{pePathway}}

> #' @param y a string representing the factor to be represented

> #' (\code{Pert, Acc} or \code{input}; see \code{\link{pePathway}})

> #' @param input.shape shape of nodes that have measured expression change

> #' @param default.shape shape of all other nodes

> #' @param pos.col color of nodes with a positive \code{y} factor

> #' @param neg.col color of nodes with a negative \code{y} factor

> #' @param zero.col color of nodes with the \code{y} factor equal to zero

> #'
> #' @value a named list as expected by \code{\link{nodeRenderInfo}}

> #'
> #' @seealso \code{\link{nodeRenderInfo}},\code{\link{par}}

> #'
> #' @examples

> #'
> #' # load experiment

> #' load(system.file("extdata/E-GEOD-21942.topTable.RData",

> #' package = "ROntoTools"))

> #' fc <- top$logFC[top$adj.P.Val <= .01]

> #' names(fc) <- top$entrez[top$adj.P.Val <= .01]

> #' ref <- top$entrez

> #'
> #' # load the set of pathways
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> #' kpg <- keggPathwayGraphs("hsa")

> #' kpg <- setEdgeWeights(kpg)

> #' kpg <- setNodeWeights(kpg, defaultWeight = 1)

> #'
> #' # perform the pathway analysis

> #' peRes <- pe(fc, graphs = kpg, ref = ref, nboot = 100, verbose = TRUE)

> #'
> #' p <- peRes@@pathways[[50]]

> #' g <- layoutGraph(p@@map, layoutType = "dot")

> #' graphRenderInfo(g) <- list(fixedsize = FALSE)

> #' edgeRenderInfo(g) <- peEdgeRenderInfo(p)

> #' nodeRenderInfo(g) <- peNodeRenderInfo(p)

> #' # notice the different type of nodes in the graph (box/circle)

> #' # the color of each node represents the perturbation

> #' (red = positive, blue = negative)

> #' # the shade represents the stregth of the perturbation

> #' renderGraph(g)

> #'
> #' nodeRenderInfo(g) <- peNodeRenderInfo(p, "Acc")

> #' # now, the color of each node represents the accumulation

> #' (red = positive, blue = negative)

> #' # notice that square nodes with no parents have no accumulation

> #' renderGraph(g)

> #'
> #' @export

> peNodeRenderInfo <- function(x, y = "Pert",

+ input.shape = "box",

+ default.shape = "ellipse",

+ pos.col = "red",

+ neg.col = "blue",

+ zero.col = "white")

+ {

+ stopifnot(class(x) == "pePathway")

+ stopifnot(y %in% c("input", "Pert", "Acc"))

+

+ nShape <- rep(default.shape, length(nodes(x@map)))

+ names(nShape) <- nodes(x@map)

+ nShape[names(x@input)] <- input.shape

+

+ nFillColor <- rep(zero.col, length(nodes(x@map)))

+ names(nFillColor) <- nodes(x@map)

+ pf <- slot(x, y)

+ nFillColor[pf <= 0] <- colorRampPalette(c(zero.col,neg.col))(256)[

+ as.numeric(cut(abs(pf[pf<=0]), 256))]

+ nFillColor[pf >= 0] <- colorRampPalette(c(zero.col,pos.col))(256)[
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+ as.numeric(cut(abs(pf[pf>=0]), 256))]

+

+ return(list(

+ shape = nShape,

+ fill = nFillColor

+ ))

+ }#' @keywords internal

> addNames <- function(x, nms)

+ {

+ if (length(x) == length(nms))

+ names(x) <- nms

+

+ x <- rep(x, length(nms))

+ names(x) <- nms

+

+ return(x)

+ }

> #' @keywords internal

> compute.bootPV <- function(real, dist)

+ ( sum(abs(dist - mean(dist)) >

+ abs(real - mean(dist))) + 1 ) / (1 + length(dist))

> #' Combine independent p-values using the Fischer method

> #'
> #' @param p a vector of independent p-values

> #' @param eps the minimal p-value considered

> #' (all p-values smaller will be set to this value)

> #'
> #' @value the combined p-value

> #'
> #' @seealso \code{\link{pe}},\code{\link{compute.normalInv}}

> #'
> #' @examples

> #'
> #' p <- c(.1, .01)

> #' compute.fischer(p)

> #'
> #' @export

> compute.fischer <- function(p, eps = 1e-6)

+ {

+ stopifnot(any(p >= 0 & p<=1))

+ p[p < eps] <- eps

+

+ k <- prod(p);

+ return(k-k*log(k))

+ }



www.manaraa.com

170

> #' Combine independent p-values using the normal inversion method

> #'
> #' @param p a vector of independent p-values

> #' @param eps the minimal p-value considered

> #' (all p-values smaller will be set to this value)

> #'
> #' @value the combined p-value

> #'
> #' @seealso \code{\link{pe}},\code{\link{compute.fischer}}

> #'
> #' @examples

> #'
> #' p <- c(.1, .01)

> #' compute.normalInv(p)

> #'
> #' @export

> compute.normalInv <- function(p, eps = 1e-6)

+ {

+ stopifnot(any(p >= 0 & p<=1))

+ p[p < eps] <- eps

+ return(pnorm(sum(sapply(p, qnorm)) / sqrt(length(p))))

+ }

> #` @keywords internal

> graph2ftM <- function(g)

+ {

+ ind <- which(as.vector(as(g, "matrix"))!=0)

+

+ from <- (ind-1) %% length(nodes(g)) + 1

+ to <- (ind-1) %/% length(nodes(g)) + 1

+

+ return(cbind(nodes(g)[from], nodes(g)[to]))

+ }

> #' Compute alpha weights

> #'
> #' Transform a vector of p-values into weights.

> #'
> #' @details

> #'
> #' Computes a set of weights from p-values using the formula

> #' \code{1-pv/threshold}.

> #'
> #' @param pv vector of p-values

> #' @param threshold the threshold value that was used to select DE genes

> #'
> #' @seealso \code{\link{pe}}
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> #'
> #' @examples

> #'
> #' load(system.file("extdata/E-GEOD-21942.topTable.RData",

> #' package = "ROntoTools"))

> #'
> #' head(alpha1MR(top$adj.P.Val))

> #'
> #' @export

> alpha1MR <- function(pv, threshold = max(pv))

+ {

+ if (!is.numeric(pv))

+ stop("pv is not numeric")

+ if (threshold == 0)

+ stop("threshold cannot be 0")

+

+ return(1-pv/threshold)

+ }

> #' Compute alpha weights

> #'
> #' Transform a vector of p-values into weights.

> #'
> #' @details

> #'
> #' Computes a set of weights from p-values using the formula

> #' \code{-log10(pv/threshold)}.

> #'
> #' @param pv vector of p-values

> #' @param threshold the threshold value that was used to select DE genes

> #'
> #' @seealso \code{\link{pe}}

> #'
> #' @examples

> #'
> #' load(system.file("extdata/E-GEOD-21942.topTable.RData",

> #' package = "ROntoTools"))

> #'
> #' head(alphaMLG(top$adj.P.Val))

> #'
> #' @export

> alphaMLG <- function(pv, threshold = max(pv))

+ {

+ if (!is.numeric(pv))

+ stop("pv is not numeric")

+ if (threshold == 0)
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+ stop("threshold cannot be 0")

+

+ return(-log10(pv/threshold))

+ }
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The rate of acquiring biological data has greatly surpassed our ability to interpret it. At

the same time, we have started to understand that evolution of many diseases such as cancer,

are the results of the interplay between the disease itself and the immune system of the host.

It is now well accepted that cancer is not a single disease, but a“complex collection of distinct

genetic diseases united by common hallmarks”. Understanding the differences between such

disease subtypes is key not only in providing adequate treatments for known subtypes but

also identifying new ones. These unforeseen disease subtypes are one of the main reasons

high-profile clinical trials fail. To identify such cases, we proposed a classification technique,

based on Support Vector Machines, that is able to automatically identify samples that are

dissimilar from the classes used for training. We assessed the performance of this approach

both with artificial data and data from the UCI machine learning repository. Moreover, we

showed in a leukemia experiment that our method is able to identify 65% of the MLL patients

when it was trained only on AML vs. ALL. In addition, to augment our ability to understand

the disease mechanism in each subgroup, we proposed a systems biology approach able to

consider all measured gene expressing changes, thus eliminating the possibility that small

but important gene changes (e.g. transcription factors) are omitted from the analysis. We

showed that this approach provides consistent results that do not depend on the choice of
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an arbitrary threshold for the differential regulation. We also showed in a multiple sclerosis

study that this approach is able to obtain consistent results across multiple experiments

performed by different groups on different technologies, that could not be achieved based

solely using differential expression. The cut-off free impact analysis was released as part of

the ROntoTools Bioconductor package.
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